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Préambule

Face à une demande croissante d’outils financiers permettant de transférer du risque climatique,
les dérivés climatiques ont connu un essor important parmi les chercheurs et les professionnels.
Cette thèse contribue à l’approfondissement des techniques d’évaluation de risques des produits
dérivés liés à la température.
Dans le Chapitre 1, nous développons un nouveau modèle de volatilité stochastique pour la
température journalière moyenne. Ce modèle constitue un élargissement du modèle classique
d’Ornstein-Uhlenbeck proposé par Benth et Benth [16]. Il nous permet d’être plus conservateur
en ce qui concerne les événements extrêmes tout en conservant des méthodes de calcul numé-
rique efficaces. Nous estimons les paramètres du modèle à partir de la méthode des moindres
carrés conditionnels sur une base de données incluant huit grandes villes européennes. Nous
montrons ensuite comment obtenir efficacement la distribution des paiements des dérivés par
des techniques de Monte-Carlo et de transformée de Fourier. Ce nouveau modèle permet de
mieux capter le risque lié à la volatilité de la température.
Dans le Chapitre 2, nous nous concentrons sur les dérivés hybrides, appelés quantos, et liant
prix de l’électricité et température moyenne journalière. Ces produits connaissent un grand suc-
cès puisqu’ils permettent de se couvrir à la fois contre les risques volumétriques et les risques
de prix. Nous développons un modèle couplé. Les sous-jacents sont modélisés par des processus
d’Ornstein-Uhlenbeck non homogènes entraînés par un mouvement Brownien et un processus
de Lévy Normal Inverse Gaussien, permettant d’inclure la dépendance entre eux. Une méthode
des moindres carrés conditionnels est développée pour estimer les différents paramètres du mo-
dèle et appliquée sur des données réelles. Ensuite, nous développons des formules explicites et
semi-explicites des espérances de paiements des dérivés, y compris des options quantos. Ces ré-
sultats sont comparés à des simulations de Monte Carlo. Enfin, nous développons des formules
explicites pour couvrir statiquement les options quantos simples et doubles par un portefeuille
d’options d’électricité et d’options de température (CDD ou HDD).
Dans l’ensemble, cette étude contribue à l’établissement d’un cadre mathématique permettant
de mieux comprendre le risque lié aux dérivés de température et d’énergie tout en répondant
aux problématiques des professionnels et de la recherche.
Mots clés : Evaluation de risque, Dérivés climatiques, Température, Quantos, Décomposition
du risque.
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Preamble

With the increasing demand for climate risk transfer financial tools, climate derivatives have
gained considerable popularity among both researchers and practitioners. This thesis con-
tributes to deepening the understanding of the risk related to temperature and energy based
derivatives.
In Chapter 1, we develop a new stochastic volatility model for the average daily temperature
that is a natural extension of the Ornstein-Uhlenbeck model proposed by Benth and Benth [16].
This model allows to be more conservative regarding extreme events while keeping tractability.
We give a method based on Conditional Least Squares to estimate the parameters on daily
data and estimate our model on eight major European cities. We then show how to calculate
efficiently the average payoff of weather derivatives both by Monte-Carlo and Fourier transform
techniques. This new model allows to better assess the risk related to temperature volatility.
In Chapter 2, we focus on quanto derivatives. We develop a coupled model for day-ahead
electricity prices and average daily temperature which allows to model quanto weather and
energy derivatives. These products are quickly spreading as they enable to hedge against both
volumetric and price risks. Electricity day-ahead prices and average daily temperatures are
modelled through non homogeneous Ornstein-Uhlenbeck processes driven by a Brownian mo-
tion and a Normal Inverse Gaussian Lévy process, which allows to include dependency between
them. A Conditional Least Square method is developed to estimate the different parameters
of the model and used on real data. Then, explicit and semi-explicit formulas are obtained
for derivatives including quanto options and compared with Monte Carlo simulations. Last,
we develop explicit formulas to hedge statically single and double sided quanto options by a
portfolio of electricity options and temperature options (CDD or HDD).
All in all, this study contributes to the establishment of a mathematical framework to better
understand risk related to temperature and energy derivatives while answering to both business
and research challenges.
Keywords: Risk valuation, Weather derivatives, Temperature model, Joint Temperature-
Electricity model, Risk hedging.
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Résumé détaillé

Le besoin de renforcer la gestion des risques climatiques, et, en particulier, de développer des
instruments efficaces de transfert de ces risques constitue un des piliers du Mécanisme interna-
tional des pertes et les dommages (WIM) [106] établi lors de la COP19. Bien que ces forums se
concentrent surtout sur l’impact des événements climatiques extrêmes sur les populations vul-
nérables, l’accélération du changement climatique a augmenté l’exposition de notre société et
de nos économies aux événements climatiques. En effet, les professionnels estiment que le chan-
gement climatique pourrait faire perdre jusqu’à 10% de sa valeur à l’économie mondiale d’ici
2050 [134]. Dans ce contexte, les dérivés climatiques sont apparus comme des outils financiers
efficaces de transfert du risque. Notre étude se concentre sur l’amélioration de la compréhension
quantitative du risque associé à ces instruments.

Les dérivés climatiques sont des instruments financiers donnant lieu à un transfert de risque
lié à un péril climatique. Ces dérivés sont indexés sur des indices météorologiques et génèrent
un paiement à maturité selon des conditions précontractualisées. En particulier, notre recherche
s’intéresse aux dérivés climatiques liés à la température pour le secteur de l’énergie. L’intérêt de
notre analyse a été, tout d’abord, d’établir un cadre mathématique propre à ces produits. Nous
avons pour cela puisé dans la littérature mais également fait converger des approches financières,
actuarielles et des praticiens. L’introduction de la thèse constitue une mise en contexte de
notre étude. Ensuite, nous nous sommes intéressés aux dérivés indexés à la température. Nous
avons ainsi développé un modèle de volatilité stochastique pour des températures journalières
moyennes. Le Chapitre 1 présente ce modèle et développe une tarification possible de ce type
de produits. Nous nous sommes ensuite intéressés aux quantos, dérivés indexés sur un indice
climatique et sur le prix de l’énergie. Le Chapitre 2 expose le développement d’un modèle
couplé pour la température moyenne journalière et le prix de l’énergie. Nous utilisons ensuite
ce modèle pour évaluer les risques liés aux quantos.

Cette recherche a été développée dans le cadre d’une Convention Industrielle de Formation
par la Recherche (CIFRE). L’étude a donc permis un transfert de connaissances entre un acteur
industriel (AXA Climate) et la recherche scientifique. AXA Climate est l’entité d’AXA en charge
des produits dérivés météorologiques et des produits d’assurance indéxés sur ces indices. L’unité
conçoit, tarifie et vend ces couvertures. Le sujet de la thèse est donc au coeur de son activité,
en particulier, pour les dérivés liés à la température.
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Résumé détaillé

Introduction aux dérivés climatiques

Un dérivé climatique est un contrat qui décrit un service de transfert de risque climatique entre
un acheteur qui souhaite se couvrir contre ce risque et un vendeur qui accepte de porter ce
risque. Le contrat est défini par trois éléments principaux :

• Un paramètre météorologique sous-jacent qui correspond à une grandeur physique suivie
pour déterminer s’il y a un paiement à maturité.

• Un indice climatique qui correspond à l’agrégation du paramètre météorologique sous-
jacent sur une certaine période de temps contractuellement prédéfinie.

• Une fonction de paiement qui relie l’indice météorologique au paiement monétaire. Nous
retrouvons, en général, les fonctions de paiement communes à d’autres marchés dérivés :
des contrats à terme, des swaps et des options.

Le marché des dérivés climatiques est né en 1996 avec une première transaction entre Enron et
Koch. En 1999, face à la demande croissante de solutions de transfert du risque météorologique,
la Chicago Mercantile Exchange (CME), principal marché nord-américain des commodités,
lance dix dérivés mensuels liés à la température sur des villes aux États-Unis. La même année,
la Weather Risk Management Association (WRMA), organisation réunissant les acteurs du
marché, est créée. Le marché connaît un grand succès dans les années 2000. En 2006, la CME
rapporte des transactions dans 47 villes du monde entier et le volume des sommes en jeu s’élève
à 45 milliards de dollars selon la WRMA [147]. Néanmoins, la crise de 2008 fait chuter la
demande et il faut attendre les années 2020 pour voir le marché repartir. En 2020, le CME
fait état d’une augmentation de 60% du volume sur les contrats à terme [53] et de nouveaux
marchés nationaux s’y joignent comme le Zhengzhou Commodity Exchange [152].

Aujourd’hui, le marché est divisé en deux domaines : un marché ouvert avec des produits
standardisés et un marché de gré à gré avec des contrats hautement ajustables. Le marché
ouvert standardisé se réduit principalement aux produits dérivés basés sur la température du
CME qui propose des contrats à terme et des options pour HDD, CDD et CAT pour 19 villes
dans le monde. Malheureusement, les volumes d’échanges quotidiens restent considérablement
limités [146] avec plusieurs jours sans transactions. La plupart des échanges se font de gré à
gré. Plusieurs acteurs semblent être actifs sur ce marché, allant des courtiers spécialisés aux
principaux réassureurs. Enfin, il est surtout difficile de recueillir des informations sur le volume
des transactions de dérivés associés à cause de l’absence d’un marché ouvert.

Quant aux clients, la plupart des secteurs économiques sont exposés aux aléas climatiques.
Les principaux acheteurs de ces produits sont certainement les énergéticiens. Dans ce secteur,
les dérivés climatiques sont utilisés pour se couvrir contre les risques volumétriques : vagues
de froid et de chaleur qui provoquent des pics de demande, manque d’intensité solaire ou de
vent qui réduisent la production d’électricité... De même, dans d’autres secteurs, les dérivés
climatiques sont utilisés pour se protéger contre les mauvaises récoltes, les dommages matériels
ou les interruptions d’activité dus à des conditions météorologiques défavorables.
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Résumé détaillé

L’évaluation du risque lié aux dérivés climatiques

Le sujet de cette thèse est la compréhension des risques liés aux dérivés climatiques. L’objectif
premier était de définir cette notion de risque afin d’aboutir à une tarification convaincante des
dérivés climatiques.

Pour établir un cadre mathématique, nous avons confronté plusieurs cadres de compréhension
de risque :

• Une approche assurantielle qui s’établit à partir des notions de mesures de risque et des
principes de calcul de prime, le tout dans un cadre de probabilité historique.

• Une approche financière qui émane de la théorie d’évaluation financière et qui suppose
un marché sans arbitrage et complet.

• L’approche des professionnels qui fait preuve de pragmatisme puisqu’elle consiste à tra-
vailler avec les indices annuels mais pêche par manque de robustesse.

Puisque les paramètres météorologiques ne peuvent pas être échangés, le marché des dérivés
climatiques ne répond pas aux conditions de non-arbitrage et complétude du cadre classique
des mathématiques financières. Nous avons donc emprunté des éléments à toutes les approches
ci-dessus afin de proposer le cadre le plus complet possible de cette vision du risque. Nous avons,
par la suite, surtout travaillé avec la distribution des paiements générés à partir de l’estimation
des modèles de sous-jacents sous probabilité historique.

Nos deux chapitres sont organisés de manière similaire. Nous développons tout d’abord un
modèle convaincant pour illustrer les dynamiques des sous-jacents ; température journalière
pour le Chapitre 1 et température journalière et prix de l’énergie pour le Chapitre 2. Nous
justifions et estimons les paramètres de ces modèles au vu des propositions de la littérature et de
différentes techniques d’estimation. Nous travaillons ensuite sur les distributions des paiements
pour plusieurs fonctions de paiement et sur notre capacité à obtenir des formules explicites et
semi-explicites pour la tarification.

Chapitre 1 : Un modèle de volatilité stochastique pour les dérivés
climatiques liés à la température

Le Chapitre 1 étudie la dynamique des températures journalières moyennes et son application
dans le domaine des dérivés climatiques. En étendant un des modèles les plus populaires de
la littérature [28], nous proposons un modèle autoregressif de volatilité stochastique pour le
processus de température (Tt)t≥0. Notre modèle élargit les modèles existants tout en capturant
les queues de distribution qui n’étaient pas bien prises en compte par les modèles précédents.

Soit (Tt)t≥0 la température journalière moyenne, (ζt)t≥0 sa volatilité et (Ft)t≥0 une filtration
adaptée à ces deux processus. Nous supposons que (Tt)t≥0 et (ζt)t≥0 suivent les dynamiques du
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Résumé détaillé

Modèle (M) : 
Tt = s(t) + T̃t,

dT̃t = −κT̃tdt+
√
ζt(ρdWt +

√
1− ρ2dZt),

dζt = −K(ζt − σ2(t))dt+ η
√
ζtdWt,

(M)

où (Wt)t≥0 et (Zt)t≥0 sont des mouvements Browniens indépendants, κ, η,K > 0, ρ ∈ [−1, 1], σ2

est une fonction non négative et les fonctions s et σ2 sont définis en Equation (1.2). (Ft)t≥0 est
alors la filtration générée par (W,Z). Ce modèle constitue une adaptation du célèbre modèle
de Heston [84]. Il permet de dépasser le modèle classique d’Ornstein-Uhlenbeck [3] [28] en
intégrant de la flexibilité au processus de volatilité. Ainsi, ce processus aborde la problématique
des résidus non-Gaussiens tout en maintenant la continuité temporelle et les propriétés de la
diffusion. En particulier, le Modèle (M) est plus conservateur que les modèles classiques vis-à-vis
des queues de distribution.

En termes d’estimation, notre principale contribution consiste à étendre les travaux de Bolyog
et Pap [34] sur l’estimation à partir des moindres carrés conditionnels (CLS). En particulier,
nous étendons la démonstration d’Overbeck et Ryden [123] sur la convergence forte des es-
timateurs CLS aux processus CIR aux cas non-homogènes dans le temps. Par ailleurs, nous
estimons le Modèle (M) sur des températures moyennes journalières dans huit grandes villes
européennes du 1er janvier 1980 au 31 décembre 2020.

La structure affine du Modèle (M) permet d’effectuer une tarification efficace grâce aux
techniques de la transformée de Fourier rapide et en combinaison avec la méthode de la variable
de contrôle. L’utilisation de la tarification par transformée de Fourier rapide pour les dérivés
climatiques est peu fréquente, même si elle a déjà été développée [27]. Nous explicitons une
méthodologie complète incluant la résolution de l’équation de Riccati autonome non-homogène
pour effectuer cette tarification. Nos résultats sont comparés à des simulations de Monte Carlo
et aux méthodes de tarification des praticiens, ce qui permet de démontrer la précision et
l’efficacité des techniques développées.

Ce premier chapitre a donné lieu à des applications industrielles concrètes. Tout d’abord, il
a permis de donner un cadre conceptuel aux pratiques de tarification. De plus, il a approfondi
la compréhension du risque lié aux dérivés de température à partir de la comparaison des
méthodes ainsi que des différentes analyses de sensibilité. Finalement, une version simplifiée du
Modèle (M) a été mobilisée pour l’adaptation de la tarification des couvertures contre le risque
de gel.

Ce chapitre correspond à la prépublication [8] qui est actuellement en révision à IMA Journal
of Management Mathematics.

Chapitre 2 : Evaluation du risque lié aux quantos indéxés sur la
température et le prix de l’énergie

Dans le Chapitre 2, nous nous intéressons aux dérivés combinant un indice de température et
le prix de l’énergie. Nous développons pour cela un modèle couplé pour la tarification de ces
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Résumé détaillé

dérivés.
Soit (Tt)t≥0 la température journalière moyenne, (Xt)t≥0 le logarithme du prix spot du jour

précédent tel que le prix spot St = eXt et (Ft)t≥0 une filtration adaptée à ces deux processus.
Ces deux processus sont gouvernés par le Modèle (ETM) :{

d(Xt − µX(t)) = −κX(Xt − µX(t)) + λσTdW
T
t + dLX

t

d(Tt − µT (t)) = −κT (Tt − µT (t)) + σTdW
T
t

(ETM)

où LX est un processus de Lévy Normal Inverse Gaussien (NIG) de paramètres (αX , βX , δX ,mX)
supposé centré. LX est indépendant de W T , un bruit Brownien. µX(·) et µT (·) représentent la
tendance et la composante saisonnière déterministe de (Xt)t≥0 et (Tt)t·0 respectivement, κX
et κT des paramètres autorégressifs et λ un coefficient illustrant la dépendance entre les deux
bruits.

Ce modèle est confronté à des données réelles. Pour l’énergie, nous considérons les prix spot
du marché en France et en Italie du Nord du 5 janvier 2015 au 31 décembre 2018 provenant
de la plateforme de transparence ENTSO-E et du Gestore Mercati Energetici (GME). Les
données des températures moyennes sont celles des stations météorologiques de l’aéroport de
Paris-Charles de Gaulle et de l’aéroport de Milan Linate.

Les premières sections du Chapitre 2 se concentrent sur la sélection des modèles. Tout
d’abord, nous discutons du choix des lois marginales. En particulier, nous confrontons les
données sur le prix de l’énergie aux modèles de la littérature et nous sélectionnons un pro-
cessus Normal Inverse Gaussien autorégressif. Ensuite, nous développons différentes méthodes
d’estimation basées sur l’estimation des moindres carrés conditionnels appliquée à la fonction
caractéristique. La discussion concernant la température est moins approfondie, le lecteur pou-
vant se référer au Chapitre 1. Nous estimons le paramètre de dépendance λ et montrons ensuite
que la dépendance entre les deux dynamiques est correctement prise en compte.

Nous nous penchons ensuite sur la question de la tarification. Nous considérons différentes
structures de quantos et définissons son espérance des paiements sous une probabilité histo-
rique :

E
( t2∑

t=t1

fS(St)× fT (Tt) | Ft0

)
où fS et fT représentent les fonctions de paiement liées au prix de l’énergie et à la température
respectivement. Nous considérons que le prix du contrat est fixé à t0 ≤ t1 et qu’il engendre un
paiement à l’échéance t2 avec t1 ≤ t2.

Nous considérons différentes fonctions fS et fT afin de représenter des contrats à terme,
des swaps, des options unilatérales et bilatérales sur chaque sous-jacent. Nous obtenons des
formules explicites de l’espérance des paiements pour les options à terme, les swaps et les options
unilatérales (E-HDD et E-CDD). Pour les options bilatérales, nous proposons une décomposition
de Taylor au premier ordre en λ faisant intervenir des espérances pouvant être calculées à partir
des formules de Carr Madan [48]. Ces formules sont confrontées aux paiements simulés par
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Résumé détaillé

Monte Carlo. Nous vérifions que les deux méthodes fournissent des résultats similaires et que
les calculs explicites permettent de gagner en temps de calcul. Nous montrons également le rôle
de λ dans l’évaluation de risque des produits dérivés.

Finalement, nous travaillons sur la décomposition du risque des E-HDD et des quantos bila-
téraux dans le cadre d’un portefeuille autofinancé. Nous réussissons à optimiser ce portefeuille
à partir de formules explicites ou semi-explicites. Nous montrons que pour 100 000 portefeuilles
simulés, nous parvenons à couvrir le dérivé quanto en moyenne et à diminuer la variance du
portefeuille. Nous analysons également l’impact du paramètre λ.

La contribution de ce chapitre est considérable puisqu’elle répond à un besoin des praticiens
auquel la littérature scientifique apportait peu de réponses. En effet, très peu d’experts se sont
penchés sur des modèles combinant température et prix de l’énergie [44] [17] et ont exploré des
dérivés sous forme de double-options. De même, la décomposition du risque sur les quantos est
clé pour les porteurs de risque puisqu’elle permet une meilleure gestion du portefeuille ainsi
que de répondre aux exigences de solvabilité.

Ce chapitre correspond à la prépublication [9] qui a été soumise.
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Introduction

The need for enhanced climate risk management, and, in particular, the need to develop effective
climate risk transfer instruments, emerged as one of the conclusions of the Warsaw International
Mechanism for Loss and Damage (WIM) [106] established during COP19. While these forums
focus particularly on the impact of extreme weather on vulnerable populations, it is a reality
that the acceleration of climate change has increased our society’s and economy’s exposure to
unexpected weather events. In fact, it is estimated that climate change could decrease up to
10% of total economic value worldwide by 2050 [134]. In this context, weather derivatives have
emerged as effective climate risk transfer tools. Our study focuses on improving the quantitative
understanding of the risk associated to these instruments.

The below provides an introduction to weather derivatives. First, we define these instruments
to understand their history and current success. Second, we present different approaches to
assess risk, contrasting the actuarial and financial approaches and describing business practices.
Third, we propose a deep dive into temperature-based derivatives with a description of Chap-
ter 1’s contribution to the related challenges. Finally, we focus on the relationship between
weather derivatives and energy markets. This would be the occasion to introduce the contri-
butions of Chapter 2, where we design and evaluate a hybrid temperature and energy quanto
derivative.

This research has been developed in the framework of a business-applied PhD contract known
as Convention Industrielle de Formation par la Recherche (CIFRE). Therefore, the study has
enabled a knowledge transfer between an industrial actor (AXA Climate) and mathematical
research. AXA Climate is the AXA entity in charge of weather derivatives and index-based
insurance products. The unit designs, prices and sells these covers. The subject of the thesis
is therefore at the core of its business, in particular for temperature-related derivatives.

1 An overview of the weather risk transfer market

1.1 History of weather derivatives

The weather risk transfer market began in 1996 when a first contract between Aquila Energy
and Consolidated Edison stated that Aquila Energy would sell electricity at a discounted price
if August temperatures were milder [112]. That same year, the first real weather derivative
transaction was reported between Enron and Koch. In 1999, faced with increasing demand for
weather risk transfer solutions, the Chicago Mercantile Exchange (CME) introduced standard-
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ized monthly temperature contracts for 10 locations in the United States. At the same time,
the Weather Risk Management Association (WRMA) was formed. It brought together en-
ergy companies, insurers, reinsurers, brokers and weather data providers for biannual meetings.
WRMA acts as a market monitor and communicator.

In the early 2000s, the market grew rapidly between power and gas traders as a way to
hedge volumetric risk in the context of volatile energy trading markets. While the market
expanded in the U.S., Europe and Japan joined the trend. In 2001, the London International
Financial Futures and Options Exchange (LIFFE) launched six daily temperature contracts for
London, Paris and Berlin. Between 2001 and 2002, the total notional value (maximum payoff)
of contracts traded in Europe increased from $49 million to $600 million [39]. In Asia, the
market grew also with many non-energy market participants entering the Japanese weather
market and the first transactions taking place in Australia. In 2003, the WRMA reported more
than $10-billion worth of transactions in weather markets [90].

By 2006, CME was reporting transactions in 47 cities around the world with increasing
success [52] and the notional value of the market was $45 billion according to the WRMA
survey. At the time, it was a market dominated by 95% temperature contracts, of which 50%
were monthly degree-day futures [146] [147]. The following years showed a slowdown in the
market with $19.2 billion notional traded in 2007, $32 billion in 2008 and only $11.8 billion in
2011 [148]. In 2014, snowfall derivatives were removed from the market. While the 2008 crisis
is in part responsible for the market shrunk, Pérez-Gonzalez and Yun [125] argue that the birth
of hybrid derivatives, combining weather and commodities, also explains part of this decline.

However, the beginning of 2020 and the increasing impact of extreme weather has led to a
rebirth of the weather derivatives market. In 2020, the CME reported an increase of 60% in
notional volume traded on futures and 143% on options compared to 2019, resulting in $750
million and $480 million respectively [53]. In parallel, China also joined the market in July
2021 by launching weather futures on the Zhengzhou Commodity Exchange [152]. In 2023,
with the weather outlook, the CME reported increasing open interest (Figure 1) and expanded
its weather derivative futures to new cities [51].

All in all, after a rapid growth and a slowdown at the beginning of the twenty-first century,
the weather derivatives market is a market that responds to the need for a financial solution to
the increasing exposure to weather risks in the global economy.

1.2 Market description

Nowadays the market is divided in two fields: an open market with standardized products and
an over-the-counter (OTC) market with highly adjustable contracts.

The standardized open market which presents the advantage of decreased cost and increased
transparency is mainly reduced to the CME temperature-based derivatives. The CME market-
place offers futures and options for HDD, CDD and CAT for 19 cities worldwide and two
seasons which can vary from contract to contract. Unfortunately, daily trading volumes remain
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Figure 1: CME Group reported open interest in weather futures and options [51].

considerably limited [146] with several days without transactions. Other markets, like LIFFE,
have practically removed weather derivatives from their products.

Most of the exchanges are made OTC. In 2004-2005, WRMA estimated that 69% of the
weather exchanges were OTC [146]. Several actors seem to be active on this market from
specialized brokers to top reinsurers as show the Annual Market Rankings [67]. The products
sold in this market are however less standardized and structured by the broker or the reinsurer
to meet the buyer’s needs. Finally, it is difficult to gather information on the volume of weather
derivative transactions.

1.3 Contract definition and characterisation

A weather derivative is a contract that describes a weather risk transfer service between parties
that wish to hedge against this risk. The contract is defined by three main elements:

• An underlying meteorological parameter which corresponds to a physical quantity
that is monitored to determine whether there will be a payout. In our study, although
other parameters will be presented in the introduction, the main underlying meteorological
parameter is the average daily temperature. The latter is defined as the average between
the daily minimum and maximum temperatures.

• A weather index which corresponds to the aggregation of the underlying meteorological
parameter over the risk or contract period. Different aggregation formulas are presented in
the following sections. The reader should note that the aggregation method is contractual,
as the calculation of the weather index from the measured meteorological parameter at
maturity is not open to interpretation.

• A payoff function which links the weather index to the monetary payoff. This function
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is also contractual, so the payoff at maturity is objective. In terms of payoff functions,
we can cite the payoff functions common to other derivative markets; futures, swaps, and
options. Some payoff functions are shown in Figure 5. First, it can be noted that for some
payoff functions, such as futures and options, a buyer-seller relationship is established
that results in a premium transaction at the time of contracting. For swaps, the premium
payment depends on the symmetry of the payoff function. Second, the payoff functions
shown in Figure 5 are all bounded by a positive value L. This corresponds to a common
market practice where claims are capped to a payoff limit of L.

K

L

−L
Figure 2: Swap P (I) =

max(−L,min(L, α ∗
(I −K)))

K

L

Figure 3: Call
P (I) = min(L, α ∗
(I −K)+)

K

L

Figure 4: Put
P (I) = min(L, α ∗
(K − I)+)

Figure 5: Payoff functions for three weather derivatives. Here I corresponds to the weather
index, K to the strike, α to the notional or tick in ($ per weather index unit) and L
to the limit of payoff.

Apart from the above, other elements also characterize a weather derivative contract:

• The risk or contract period defines from which date to which date the weather param-
eter is aggregated to calculate the weather index. Similar to European derivatives, the
weather derivatives are exercised at maturity. The index is accumulated through the
whole contract period and the amount of the claim can only be computed, and hence
paid, at maturity.

• The weather data source corresponds to the weather station or official website from which
the weather measurements can be extracted. In general, for individual risks and in de-
veloped countries, it corresponds to the identification of the weather stations as reported
by the World Meteorological Organization (WMO) or the country’s public authority. For
non-developed countries, where weather stations are not available, it can correspond to
the satellite data provider, usually a spacial agency (NASA, ESA...) or a university
(Columbia). For specific hazards such as tropical cyclones, the tropical cyclone track is
monitored by national agencies (NOAA, JMA, HKO, BOM) which provide official tracks.
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• The settlement data provider is a third party to the contract that delivers the data
measurements at maturity. This figure certifies the quality and objectivity of the measured
data. This data quality control can add some time to the claim settlement process. The
data settlement period is also contractually specified so that the buyer is certified to
receive the claim, if any, in a period after maturity. In addition, it should be noted
that the agency providing the weather measurements and the settlement data provider
can be two different entities. For example, the agency may be the national agency that
manages the network of weather stations, while the settlement data provider may be a
private company that certifies the readings of a particular weather station involved in the
contract.

The above describes the main features of a weather derivative contract. Subsection 1.5 breaks
these down later into different weather perils.

1.4 Advantages of weather derivatives

In the energy sector, weather derivatives are used to hedge against volumetric risks: cold and
heat waves that cause peaks in demand, lack of solar or wind intensity that reduces electricity
generation... Similarly, in other sectors, weather derivatives are used to hedge against crop
failure, property damage or business interruption due to adverse weather conditions. In all of
the above cases, the weather index is not the loss experienced by the buyer, but a proxy for
the potential financial loss. There may be a difference between the financial losses predicted
by the index and the actual losses incurred by the company.

These products present however several advantages:

• Transparency and objectivity: The underlying weather parameter is independent of hu-
man activity in the short term. Therefore, neither the buyer nor the seller can influence
the course of this parameter. In addition, the weather data is often public and, in our case,
certified by a third party data provider. This provides high transparency and prevents
information asymmetries.

• Moral hazard: Similarly, the behavior of the buyer cannot, in principle, influence the
outcome of the index at maturity. This reduces the risk of fraud and moral hazard for the
seller of the contract. In addition, the role of the settlement data provider is to ensure
that there has been no manipulation of the data or the instruments used to capture it.
The buyer is not incentivized to increase its risk.

• Payment speed: Measured weather data is available shortly after maturity. Provided
there is adequate time to monitor data quality, claims can be settled very quickly. While
this is not different from other commodity derivatives, it can make an important difference
for crop failure, property damage or business interruption. In these cases, recovery times
are much shorter.
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• Lower and shorter transaction costs: Index-based contracts rely on the index value at
maturity to trigger a claim, unlike other risk transfer contracts that require a loss adjuster
to confirm the loss level. This is particularly true for agricultural and property losses.
In these cases, claims settlement can involve lengthy and costly negotiations, including
field visits, additional intermediaries and litigation costs. Weather derivatives avoid these
post-disaster transaction costs by providing a fully transparent claims process.

The above points are often used to explain the success of weather derivatives, particularly
against alternative risk transfer products such as indemnity-based insurance. While they can
partly explain the growing success of the weather derivatives market, other factors should not
be forgotten. In particular, the increasing availability of weather data through the development
of satellite data and the efforts of national meteorological agencies to share available data. The
increasing frequency of extreme weather events and the greater volatility of seasonal weather
have also raised the awareness of those exposed to these risks.

1.5 Who and what is covered by weather derivatives

Almost any weather risk can be covered by a weather derivative, provided there is a seller. But
who are the main buyers of such products? We propose below a non-exhaustive list of actors
that may be affected by weather perils:

• Energy companies, which manage the risk of reduced revenues in mild weather conditions,
given that the amount of energy sold depends heavily on consumer demand, which is
driven by temperature.

• Agricultural production and transportation companies that are particularly sensitive to
meteorological conditions that result in reduced yields.

• Retailers whose sales are sensitive to weather conditions. For example, sales of beer in
the summer may decline due to cooler weather [90].

• Leisure infrastructure such as hotels and amusement parks that depend on favorable
weather conditions.

• Financial actors (investment banks, asset managers, insurers and reinsurers) that are
exposed to the impact of weather conditions on their portfolios.

There are many weather adversities that can be covered by the above. Table 1 provides a
non-exhaustive summary of the diversity of weather derivative underlyings.

However, some perils are more common, affect more weather derivatives market participants,
or are more difficult to obtain coverage for. The most popular weather derivatives characteri-
zation are described below:
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Peril Parameter Weather index Source

Heat wave, cold wave,
frost Temperature

HDD, CDD, CAT,
minimum temperature,
maximum temperature

Weather station,
satellite data

Drought,
excess of rainfall Rainfall Cumulative rainfall,

number of rainy days
Weather station,
satellite data

Lack of snow Snowfall Cumulative snowfall Weather station
Lack of wind energy
production Windspeed Wind power production Weather station,

satellite data
Lack of solar energy
production Solar radiation Solar power production Satellite data

Cyclone Cyclone intensity
or track

Cyclone intensity
or track Public agency

Earthquake Earthquake intensity Seismic intensity,
magnitude Public agency

Drought, wildfire Vegetation indices NDVI, soil moisture,
burned index Satellite data

Table 1: Summary of the different weather parameters and indices defining a weather derivative
contract

Temperature Temperature weather derivatives are, by far, the most popular type of weather
derivatives. In fact, temperature fluctuations strongly affect all sectors of the economy. Garcia
Léon [73] estimates that the heat waves of 2003, 2010, 2015 and 2018 affected 0.3 to 0.5% of
European Gross Domestic Product (GDP) [73]. Similarly, the weather derivatives market is
largely dominated by temperature-based products, which accounted for 95% of the market in
2006 [147]. The underlying parameter of these contracts is often the average daily temperature,
defined as the average between the maximum and minimum daily temperatures, such that on
day t,

Tt :=
Tmax
t + Tmin

t

2
.

This average daily temperature is aggregated to calculate HDD (Heating Degree Days), CDD
(Cooling Degree Days), and CAT (Cumulative Average Temperature) as defined below:

HDD :=

t2∑
t=t1

max(0, Tb − Tt), CDD :=

t2∑
t=t1

max(0, Tt − Tb), CAT :=

t2∑
t=t1

Tt,

In the above, Tb is a base temperature, t1 is the start of the contract period, and t2 is the end
of the contract period. Tb can vary, but is set by default to 65°F and 18°C for U.S. and non-
U.S. based contracts, respectively [51]. Due to their volume, HDD, CDD, and CAT contracts
have spawned numerous scientific studies and dominate the weather derivatives books, see for
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example Jewson and Brix [90], Zapranis and Alexandridis [4], and Benth and Benth [24]. Some
trades involve other indices such as minimum or maximum temperature, which can be used to
identify frost or heat waves, particularly affecting the agricultural sector.

Rainfall One might expect rainfall covers to be as popular as temperature covers, as some
sectors such as agriculture are very sensitive to rainfall patterns [144] [4]. However, these trans-
actions are mainly OTC and often within the framework of insurance contracts. Consequently,
less research has been devoted to modelling precipitation indices and parameters. In both
cases, modeling challenges include a large number of zero observations, non-negative values,
and the presence of long tails. For index modelling, the most widely used rainfall index is the
cumulative rainfall over a risk period (CR):

CR :=

t2∑
t=t1

DRt

where DR is the daily rainfall. The gamma distribution has emerged as the most popular choice
in practice to model rainfall data, as it addresses the first two issues cited above [90] [104].
Regarding daily modelling, some models similar to the temperature models presented below
have also been developed for precipitation. We can cite the frequency severity model [120] [30]
and autoregressive models integrating jumps [46].

Wind Derivatives based on wind intensity are often used to hedge against shortfalls in wind
energy production. However, energy output depends not only on the input wind intensity,
but also on the characteristics of the turbine. While wind direction is no longer an issue, the
equivalent energy produced by a wind turbine is non-linearly proportional to the instantaneous
wind [44] [90]. Therefore, daily models based on average wind speeds [5] [18] are often in-
sufficient to proxy wind production. Various responses have been proposed to address this
challenge by introducing hourly modeling [154], introducing a wind index [90], or working with
polynomial wind based indices [109].

Solar Radiation Similar to wind related derivatives, solar irradiance based derivatives have
emerged as powerful tools to hedge against cloud presence decreasing solar production [31].
Very little has been written on irradiance indices and daily modelling. We can cite Boyle and
al. [36]’s model that integrates cloudy days.

Cyclone Intensity While there are some statistical approaches to modelling hurricane inten-
sity [66], there is little literature between the above and the pricing of weather derivatives [50].
No clear scientific consensus has emerged for the pricing of such derivatives, and the business
practice methods described in Subsection 2.3 prevail in practice.

8



Introduction

1.6 Data Accessibility and Quality

Accessing weather data can be more complicated than expected. While satellite data is readily
available at a reasonable level of granularity, access to weather station data varies by location.
Some countries such as the USA and Australia provide free access to weather station data, while
the same access to European or Japanese stations is expensive and difficult to obtain [90]. Given
the above, it is not surprising that a number of private companies offering access to a large
and cleaned network of weather stations have appeared in recent years. In our study, we used
data from one of these private companies, Speedwell Climate. The company offers a network of
public and private weather stations and provides data cleansing as described in the paragraph
below.

The analysis of the quality of weather data is a field of research in itself [54] [1] [91]. A par-
ticular challenge is the detection of inhomogeneities in weather time series. Several approaches
are possible [54]:

• Historical coherence check, which consists of testing the historical statistical and physical
consistency of the observed time series.

• Spatial coherence check, which consists of comparing the observations with data from
neighbouring stations.

• A geostatistical simulation approach that consists of comparing the observations with
predicted data proxied by the neighbouring stations.

The third approach is particularly interesting because it not only allows outliers to be detected,
but also provides replacement data that can be used to correct inhomogeneities or fill gaps.
Another important key aspect of weather station data cleaning is the detection and correction
of breakpoints. Indeed, a change in the weather station environment or the movement of the
weather station can lead to permanent breaks that affect the consistency of the historical time
series [1] [91]. Recalibration of the time series is then required.

Finally, the importance of data quality depends on the use of the data. Forecasting requires
the most recent data available, regardless of whether that data has been robustly validated.
Therefore, the data used for forecasting is usually uncleaned. It is also known as synoptic
data. For pricing weather derivatives, data quality requirements are higher [3]. Homogeneity
adjustments and recalibration are essential to avoid under- or overestimation of risk. Similarly,
at maturity, it is important to rely on reliable data to settle the claim. The same former com-
panies often provide weather data settlement services. They act as third-party data providers,
providing both parties with cleaned and externally verified data.

1.7 Index-based insurance and its link to weather derivatives

In parallel with the weather derivatives market, an index-based insurance market has developed
in recent years. This section provides a brief overview of the index-based insurance market and
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compares the two products.
Index-based insurance products are insurance contracts that define a claim payment between

an insured and an insurer when an index (usually a weather index) exceeds a specified threshold.
Similar to weather derivatives, these products were born in the late 1990s when the Association
of Small Island States (AOSIS) proposed the establishment of an international insurance scheme
to compensate small islands and underdeveloped nations affected by sea level rise [111]. While
the project grew in subsequent years, the index-based insurance scheme remained theoretical
until the early 2000s [106]. In 2005, the World Bank launched the Weather Index-based Crop
Insurance in Malawi, a rainfall-based insurance scheme for 50,000 smallholder farmers [76]. In
the same year, the Mongolian government, with support from the World Bank, introduced the
Index-Based Livestock Insurance Project [138], which is based on livestock mortality rates and
has covered more than 14,000 herders in its first four years. Since early 2000, some index-based
insurance programs have gained recognition:

• Uruguay Hydro Energy Insurance Program, launched in 2009 to protect Uruguay’s pub-
lic electricity company against the risks of drought and high oil prices. This program,
financed by the World Bank, covered the company for losses up to $450 million [139].

• Since 2007, the Caribbean Catastrophe Risk Insurance Facility (CCRIF) has insured small
governments in the Gulf of Mexico against tropical cyclones and excess rainfall. During
Hurricane Irma in 2017, this facility paid out $31.2 million to affected countries [151].

• The African Risk Capacity (ARC), a sovereign risk pool treaty organization launched in
2012, provides rainfall-based insurance to 33 countries in Africa [86].

As we can see, index-based insurance programs have emerged as a natural response to the
challenge of loss and damage. They have gained important recognition as successful public-
private partnerships that can protect the most vulnerable from major climate disasters.

Returning to weather derivatives, one might wonder how they differ from the products de-
scribed above. Contrary to the common belief that index-based insurance tends to cover more
low frequency/high severity events such as natural catastrophes [137], nothing in the char-
acterization of the risk transfer contract justifies this. In fact, both contracts are identically
defined as described in Subsection 1.3. The main formal differences arise from the regulatory
and legal framework which impose different tax and accounting obligations [90] [133]. Weather
derivatives are also more prone to speculative behaviours [3].

2 Weather risk valuation practices

The previous section has introduced weather derivatives and their market. This section focuses
on risk valuation of these products.
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2.1 Actuarial vs financial approach

One of the challenges of our study is to define risk, and therefore price. In fact, there are two
approaches for evaluating risk: an actuarial approach and a financial approach.

Actuarial approach Following Denuit [61] and Laeven, and Goovaerts [98], we define the
framework of actuarial premium calculation. Let consider a probability measurable space (Ω,F)
where Ω is the outcome space and F is a σ-algebra defined on it. Let S represent a risk
corresponding to the final loss or claim. S is a random variable defined on (Ω,F).

Definition 2.1. A premium calculation principle π is a functional assigning a real number to
any random variable defined on (Ω,F).

Under the actuarial approach, for an insurer exposed to a loss S, a premium calculation
principle gives the premium π(S) to be charged to the insured for a contract. Premium princi-
ples are the most common risk measures applied in the actuarial field. They can present some
desirable properties: law invariance, no-ripoff, monotonicity, transitivity, positive homogeneity
and subadditivity. In addition, some of premium calculation principles are related to utility
theory as exposed by Goovaerts, De Vijlder and Hazendonck [79]. We list below most common
principles:

• Expectation principle: π(S) = (1 + δ)EP(S) where the loading δ > 0 enables to integrate
expenses and solvency margins.

• Variance principle: π(S) = EP(S) + δV ar(S) where δ > 0.

• Standard deviation principle: π(S) = EP(S) + δ
√
V ar(S) where δ > 0.

• Quantile principle: π(S) = F−1(q) where q corresponds to the quantile such that F−1(q) =
inf{s ∈ R, F (s) ≥ q} and F the cumulative distribution function of S. This principle is
also called Value at Risk when used as a risk measure.

We leave behind a bunch of other principles like the exponential principle and the Esscher
principle. The choice of the actuarial principle depends on the desired properties as well as on
market standards. The reader can also note that we introduced the probability P corresponding
to the so-called historical or physical probability. One can also note that a discount rate e−r(T−t),
where T corresponds to the time of maturity of the contract, r to the return of riskless asset
and t to the buying or selling time, can also be added to the principles π.

While all precedent definitions hold for any probability law, the actuarial principles are
often applied in the historical framework. Finally, we define the Actuarial Fair Price as the
expectation of risk S under the historical probability EP(S).
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Financial approach Up to now we have worked in the underlying probability space (Ω,F ,P).
The financial principle corresponds to the shifting to a filtered probability space (Ω,F , (F)t≥0,P)
where (F)t≥0 corresponds to an increasing family of σ-subalgebras of F representing the infor-
mation on the underlying process S (here corresponding to the claims process). The Funda-
mental Theorem of Asset Pricing states then that, in a market with no arbitrage opportunity,
there exists a probability measure Q equivalent to P such that the discounted price of assets
are Q martingales. Following Lamberton and Lapeyre [100], if the market is complete, we can
define an admissible strategy replicating the contingent claim S that gives us the following
price:

πt = e−r(T−t)EQ(S | Ft)

Leaving aside the notion of discount we will address later, we can see that the price formula
is based on the hypotheses that for any claim an admissible replicating strategy is attainable.
This is only valid in complete markets. In addition, under this market completeness hypotheses,
there exists a unique risk-neutral measure Q equivalent to P under which S is a martingale.

The hypotheses of market completeness strongly depends on the dynamics of the underlying
asset producing the claim S. Under desirable assumptions on the dynamics of the underlying,
like the geometric Brownian motion in the Black-Scholes framework, converting the physical
measure P into the risk-neutral measure Q can be done through the Girsanov theorem. In the
geometric Brownian motion case this leads to the following measure transformation:

WQ = W P +
µ− r

σ
t

where WQ is the Brownian motion under the risk-neutral measure, W P the Brownian motion
under the historical measure, µ the drift and σ the standard deviation of the geometric Brow-
nian motion and r to the return of riskless asset.

While there have been attempts to reconcile the actuarial and financial approaches [59], they
derive from completely different initial postulates. Nevertheless, for certain actuarial principles
and underlying asset dynamics, the pricing formulas can coincide. Taking again the Black-
Scholes case with S following a geometric Brownian motion, we get the following price at
maturity T :

πt = e−r(T−t)EQ(S | Ft) = e−µ(T−t)EP(S | Ft)

One can recognize the expectation insurance principle in the above formula in this very specific
case.

2.2 Pricing challenges

While some experts use the previous approaches [142][28][3], we will see that they present
significant limitations to the pricing of weather derivatives. The latter are explored below.

12



Introduction

Existence of an arbitrage free market The difficulty to show completeness and no-arbitrage
on the weather derivative market is the main reason why we cannot take a purely financial
approach to price weather derivatives.

The weather derivatives market does not exhibit the characteristics of an arbitrage-free mar-
ket. First, the risk-neutral framework assumes the existence of an underlying tradable market.
However, since weather cannot be stored or traded, there is no such underlying weather mar-
ket [5]. Muëller and Grandi [117] argue that we could not establish a unique monetary value
for the underlying weather parameter because market participants may have different financial
sensitivities to adverse weather conditions. Second, the weather derivatives market is a rela-
tively illiquid market [5], with approximately 70 types of contracts traded and only 1, 000 sold
per month on the CME. Most of the contracts are traded over the counter and cannot be used
to feed the market information. The main consequence is possible arbitrage opportunity which
means enrichment without initial investment may exist and the results of the theory of asset
pricing do not apply.

Let accept for one moment the hypotheses of no-arbitrage. For the same reasons as above,
we are confronted to an incomplete market with potentially infinite risk-neutral measures.
Again, we can not deploy the classic option theory for pricing weather derivatives. Finally,
some authors defend a close-to-nill market price of risk. Analysing CME data, Weagley [146]
finds that weather derivatives are usually priced close to their Actuarial Fair Price. Using an
alternative approach, Cao and Wei [42] also find that the market price of risk for temperature
derivatives is very small.

Discount rate Both the actuarial and financial approaches agree on the introduction of a
discount rate r which takes into account the opportunity cost of not investing in a risk-free asset
between the time the derivative is sold and maturity. While this assumption is theoretically
justified, most authors bypass the challenge of combining risk rates of different markets. Some
authors suggest using the interest rate on a treasury bill but do not implement it [28], others
remove this factor by supposing premium transfer at maturity [16], others ignore this factor [90]
or set it to 0 [38].

In our case, we also choose to ignore this factor. First, because contract selling time is only
few months before maturity. The influence of the discount rate is therefore small. Second,
because we consider we can hedge against rate this risk in liquid markets.

Recent works on weather derivative pricing The main proposal to address the challenge
of lack of open market is the so-called indifference pricing [153]. This method does not give an
exact price, but an interval of acceptable prices at which the seller and the buyer would like
to make the transaction. In both cases, the minimum (or maximum) price of the buyer (or
seller) is determined as the value at which the buyer (or seller) is indifferent between retaining
or hedging the risk. Going one step further and under perfect information hypotheses, Barrieu
and al. [13] argue that the seller would set the price that maximizes his expected utility. While
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the above approach remains interesting, it has several drawbacks. The first is the somewhat
arbitrary utility functions. The second is the ability to provide only intervals and not prices
without constraining hypotheses. Other approaches have been considered. Davis [58] suggests
using marginal rate substitution, which also integrates utility functions. Cao and Wei [42]
propose an equilibrium framework based on the Lucas model. Benth and Sgarra advocate to
use the Esscher transformation for pricing in such markets [29].

In summary, there is no clear agreement on the most appropriate approach to price weather
derivatives. The actuarial and financial approaches offer avenues for convergence. However,
there are still challenges that they do not fully address. Our position throughout this study has
been to stick to our ability to estimate and simulate the distribution of losses. When "price" is
mentioned, it always refers to the Actuarial Fair Price under historical probability. We leave
this topic as a possible extension of the current study.

2.3 Risk valuation business practices

The following two subsections develop the risk valuation methods used in the business world.
Both are based on the assumption that the weather index I follows a certain distribution and
is the only random element of the contract. Using these methods, we compute the Actuarial
Fair Price defined in subsection 2.1, which will be denoted π from now on.

Burned Analysis The burned analysis method takes a naive approach to calculate EP(S). It
approximates the theoretical expectation of losses by the average historical payoffs. For further
references see Schiller and al. [130], Jewson and al. [90] and Benth and Taib [135]. Suppose
(In)1≤n≤N corresponds to the historical seasonally aggregated past realisations of the index
between season 1 and season N . Then the burned price is:

πBA =
1

N

N∑
n=1

P (In)

where P is the payoff function.
The main advantage of this method is that it is easy to implement. However, it presents an

important drawback: missrepresentation. Indeed historical weather stations present, in the best
cases, 40 years of good data. The length of the series (In)1≤n≤N is therefore of N = 40. Such
short samples may not be representative of the distribution of the index I, missing particularly
events of high return periods. EP(S) computed through the burned analysis method is likely
to be biased.

A second question arises: the time homogeneity of the index I. In fact, the burned analysis
is based on the hypothesis that the index observed over 40 years ago was as lucky to happen
today. However, in the context of climate change, global warming, seasonal shifts and increased
climate volatility cannot be ignored.
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We will not describe all the methods used in business practices to address these climate
change issues, but only trend removal, which is by far the most widely used step. The principle
is to consider that our index I can be decomposed into a deterministic part s(n), the year-
dependent trend, and a random part Ĩ. Since the risk comes from the random term, the risk is
historically time-homogeneous such that:

In = s(n) + ϵn and Ĩn = In − s(n) + s(N) (2.1)

(ϵn)0≤i≤N are considered independent and identically distributed, and (Ĩn)0≤i≤N corresponds to
the updated version at year N of the index I. The burnt analysis is now applied to the updated
observations as follows:

πBA =
1

N

N∑
n=1

P (In − s(n) + s(N))

The reader may also note that the above detrending approach can be applied to both the
index I and the underlying that defines the index. Sometimes both detrendings converge, and
sensitivity to the choice of detrending is often tested.

Finally, the burned analysis approach may seem rather naive. It corresponds, especially for
low-volatility covers, to a first and widely used pricing method.

Index modeling Index modeling is the second common method of pricing risk in business.
For literature see Dorfleitner and al. [63], Schiller and al. [130] and Jewson and al. [90].

The principle is to model (In)0≤i≤N or (Ĩn)0≤i≤N by a classical continuous distribution (Nor-
mal, Gamma, Logistic...) and infer the value of the Actuarial Fair Price πIM .

Below is a summary of the steps taken to implement this method.

1. From the underlying daily parameter, we compute the aggregate index (In)0≤n≤N .

2. If necessary, the data are updated by correcting the trend factor as in the equation (2.1).

3. We fit a probability distribution to the annual indices (In)0≤n≤N using the method of mo-
ments or maximum likelihood. Given a certain visual or statistical criteria (Kolmogorov-
Smirnoff, Anderson-Darling metric), we choose the best distribution.

4. We calculate the expected payoff under this fitted distribution by Monte Carlo simulations
or numerical integration and obtain πIM .

3 An introduction to temperature models and their
application to weather derivatives risk valuation

As introduced in Subsection 1.5 most of our work has focused on temperature-based derivatives.
This section offers an introduction to the main models and describes the contributions and
potential developments of Chapter 1.
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3.1 Literature review on temperature models

We consider (Tt)t≥0 a stochastic process representing the daily average temperature defined as
the average between the maximum and the minimum daily temperature.

The success of Ornstein-Uhlenbeck models In spite of some dissonances there seems to be
an overall agreement on the modelling of temperature dynamics through Ornstein-Uhlenbeck
equation. First introduced by Alaton et al. [3] and spread by different articles of Benth [28] [129],
the dynamics are modelled as below:{

Tt = s(t) + T̃t,

T̃t = −κT̃tdt+ σ(t)dWt,
(3.1)

where (Wt)t≥0 is an independent Brownian motion, s a seasonality and trend deterministic
function, κ a nonnegative mean-reverting parameter and σ a deterministic nonnegative function
corresponding to the volatility.

Deterministic function specifications The first source of divergence in the literature is the
specification of the deterministic functions s and σ. The general specifications correspond to:

s(t) = α0 + β0t+
Ks∑
k=1

αk sin(ξkt) +
Ks∑
k=1

βk cos(ξkt)

σ2(t) = γ0 +

Kσ2∑
k=1

γk sin(ξkt) +

Kσ2∑
k=1

δk cos(ξkt).

(3.2)

where ξ = 2π
365

, ξk = kξ and Ks ∈ N∗. Alaton [3] and Benth and al. [28] agree to keep Ks = 1
while they disagree on Kσ2 as Alaton [3] suggest to keep Kσ2 = 1 and Benth and al. [28] take
Kσ2 = 4. In addition, Alaton [3] tests monthly volatilities and finally advocates to keep σ
constant. Others suggest alternative modeling for s through splines [130] or through wavelet
analysis [4].

Handling non-normal residuals While Model (1.1) is taken as base model, many authors
contest the normality of the residuals and have developed alternative model specifications, see
below a non-exhaustive enumeration of alternative noises:

• GARCH models: Campbell and Diebold suggest a AR(25) model followed by a GARCH(1,1)
model for the residuals of average daily temperatures of four U.S. cities [41]. Even thought
the complexity of this model is discussed by Benth and Benth [129], the article introduces
an interesting approach to model discrete volatility.
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• ARIMA models: Caballero and al. [40] also work on discrete time series analysis, propose
more than one autoregressive term dynamics AR(3) and defend statistical significance of
ARIMA(1,d,1) models for Central England Temperature (CET), Chicago and Los Angeles
daily temperatures.

• Fractional Brownian motions: Brody and al.[38] suggest to use Fractional Brownian mo-
tions [74] to capture long-memory effects and apply the model to daily CET data.

• Lévy noises: An alternative model to Brownian residuals that keeps time continuity are
Lévy noises. These have been explored by Benth and Benth [25]. The authors suggest to
model average daily temperatures in 7 Norwegian cities with marginals following general-
ized hyperbolic distributions. Richard and al. [126] study temperature in Fresno (Califor-
nia, US) and defend, after a comparison of different statistical metrics, a mean-reverting
Brownian motion with log-normal jumps and first-order autoregressive conditional het-
eroscedastic noises.

• Regime-switching models: Elias and al. [64] defend a two-state Markov regime-switching
model with one regime governed by a mean-reverting process and the other one by a
Brownian motion to describe daily temperature in Toronto (Canada).

3.2 An overview of Chapter 1

A stochastic volatility model for temperature dynamics Our first Chapter contributes
to the analysis of average temperature dynamics and their application in the field of weather
derivatives. Inspired by some models explained in Subsection 3.1, we investigate the interest of
applying a stochastic volatility model for the temperature process (Tt)t≥0. Our model extends
the existing models proposed in the literature while it enables to capture important fluctuations
that were not illustrated by former models. Namely, we introduce Model (M):

Tt = s(t) + T̃t,

dT̃t = −κT̃tdt+
√
ζt(ρdWt +

√
1− ρ2dZt),

dζt = −K(ζt − σ2(t))dt+ η
√
ζtdWt,

(M)

where (Wt)t≥0 and (Zt)t≥0 are independent Brownian motions, κ, η,K > 0, ρ ∈ [−1, 1], σ2 is
a nonnegative function and the functions s and σ2 will be taken as in (1.2). We will denote
(Ft)t≥0 the filtration generated by (W,Z), so that the processes T and ζ are adapted to it. This
model is somehow an adaptation of the celebrated Heston model [84].

We apply Model (M) to the study of daily average temperatures in 8 major European cities
from January 1st 1980 to December 31st 2020.

The following sections focus on key calibration challenges that are less explored in litera-
ture. As in Bolyog and Pap [34], we implement Conditional Least Square (CLS) estimation to
calibrate Model (M). We study strong consistency of CLS estimators for the time-dependent
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CIR volatility process. We complement the proof of Overbeck and Ryden [123] in a time
inhomogeneous case.

With respect to pricing, the development of an extended Heston model allows for effi-
cient pricing methods using Fourier transform techniques. We adapt the approach in Carr
and Madan [48] to our model and implement Fast-Fourier Transform pricing. We combine
simulation-based pricing and Fourier-transform-based pricing using control variables to reduce
the computational time to 105.

3.3 Contributions of Chapter 1

Model (M) enables to go beyond the classical Ornstein-Uhlenbeck model [3] [28] by adding the
last flexibility to the volatility process while keeping tractability. This process addresses the
issue of non-Gaussian residuals while maintaining time continuity and diffusion properties. In
particular, it is more conservative regarding extreme events than the corresponding Gaussian
model. It also enables to better understand and model the risk related to the volatility.

In terms of estimation, our main contribution consists in leveraging Bolyog and Pap [34] work
on Conditional Least Squares estimation. In particular, we extend Overbeck and Ryden [123]
demonstration of strong consistency of CLS estimators for the time-dependent CIR processes
to a time inhomogeneous case.

Keeping the affine structure of the dynamics enables to perform efficient pricing through
Fast Fourier Transform techniques for some indices and combined with control variates for
other indices. The use of Fast Fourier Transform pricing for weather derivatives is not as
widespread even though it has already been developed [27]. We explicit a whole methodology
including the resolution of time inhomogeneous autonomous Riccati equation to perform this
pricing. All our results are compared with Monte Carlo simulation enabling to show accuracy
and increased computational efficiency of the developed techniques.

Industrial applications The first major contribution of the study has been the mathematical
formulation of pricing practices (Burned Analysis and Index Modelling), leading to a better
understanding and adjustment of current practices. In particular, it has made it possible to
extend simulation-based methods to calculate the Actuarial Fair Price. It has also helped to
rationalize the view of risk according to actuarial principles and loadings.

The second contribution has been to deepen the understanding of daily temperature models.
Given global warning and the low reliability of seasonal forecasts, understanding temperature
trends is an important issue. This study and the related scientific literature have contributed
to the discussion of some trend modelling choices and has led to a Research and Development
project within AXA Climate.

Finally, this study has participated to the implementation of daily models dealing with cold
waves and frost cover. Various adjustments have been made to the models studied in this
report to facilitate computational feasibility and to adapt to extreme temperature modeling.
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However, this study has brought the tools and capacity to stand back and improve the pricing
of these products. This model has already been leveraged for pricing and is currently being put
in production.

3.4 Further relevant issues

While we have chosen to move into energy and temperature derivative risk pricing in line with
industry needs, the field of weather derivative pricing still presents challenges.

Compute a market price of risk As discussed above, pricing in incomplete markets has not
yet been tackled. Various methods have emerged, such as indifference pricing [153], the marginal
utility approach [58], quantile hedging and shortfall minimization [71] [70], and quadratic ap-
proaches [82]. Unfortunately, none of these approaches has emerged as the best method, and
some require the introduction of additional hypotheses such as utility functions. Another alter-
native would have been to compute the market price of risk in complete markets where weather
derivatives traders are present and generalize the market price of risk to the weather market.
However, this would have required finding a complete market common to weather derivatives
traders, which may not exist, knowing that most commodity markets, such as the energy mar-
ket, are also considered incomplete. In addition, Weagly [146] finds that weather contracts are
usually priced near their Actuarial Fair Price.

Expand to multiple locations Weather derivatives are often presented as a bucket of weather
stations, where the index corresponds to the aggregation of a weighted average of daily temper-
atures by location. The corresponding derivative is therefore dependent on various marginals
that follow the process studied in this thesis. In order to evaluate the risk with respect to this
bucket, it is necessary to develop multidimensional daily temperature models that introduce
dependence structures to account for risk diversification effects. Unfortunately, there is not
much literature on this topic, while it corresponds to a real business need [121].

4 An introduction to derivatives for the energy market

Weather derivatives are closely related to the energy market. In fact, the first exchanges were
between energy companies, and in 2004-2005 the WRMA estimated that 69% of OTC weather
derivatives end users were energy companies [146]. This section explores these links and presents
our research on coupled energy and weather models.

4.1 The role of weather derivatives in the energy market

An evident link between energy markets and weather derivatives The impact of climate
drivers such as ENSO or the North Atlantic Oscillation (NAO) on the electricity market has
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been demonstrated in the literature [145]. Curtis and al [57] show that the NAO phases have a
statistically significant impact on both thermal generation costs and electricity prices in Ireland.
While Morcillo and al [116] show that the El Nino phenomenon affects the water contributions
of Colombian rivers used to power hydroelectric plants, affecting energy availability and prices.
Ely and al. [65] defend that NAO has an impact on both electricity generation and demand.
Rowinska an al. [127] show that the wind energy generation and the wind penetration index
partly explains electricity spot prices. Overall, on the generation side, climate factors affect
reservoir inflows and the availability of wind and solar for renewable generation. On the demand
side, an unusually warm or cold premium can trigger peak demand for cooling or heating.

In the above cases, and because energy cannot be stored, we consider weather conditions to
affect the volume of energy available. We call this volumetric risk because it results from a
change in demand for goods due to a change in weather [117]. Weather derivatives are often
used to hedge this volumetric risk. While weather derivatives can also be used to hedge against
price risk, this is a less popular approach as other financial tools already exist for this hedging
need [37].

The relationship between the energy market and temperature Focusing now on tempera-
ture, the literature has also studied the impact of temperature variability on the energy market,
where temperature is considered to mainly affect demand. Benth and Meyer-Brandis [23] sug-
gest a negative correlation between temperature and energy prices in the Nordics, where cold
conditions lead to increased heating demand and energy prices. Similarly, warm conditions can
lead to increased demand for cooling. Another perspective is price expectations. Considering
that energy cannot be stored and the variability of the energy market, forecasts are one of
the pieces of information available to predict the day ahead and future electricity demand and
prices. Temperature forecasts therefore play a key role in the construction of day-ahead and
future electricity prices [83].

Hedging volumetric and price risk with weather derivatives In recent years, hybrid prod-
ucts have been developed to hedge both price and volumetric risk. According to Pérez-González
and Yun [125], the birth of these products is partly responsible for the shrinking popularity of
classic weather derivative products since 2007. These hybrid products are known as quantos
and have existed in the commodity derivative market for some time, allowing simultaneous
hedging of commodity price and rate changes [14] [88].

On the field of climate derivatives different combinations have been studied. Benth and
al.[22] use a Heath–Jarrow–Morton approach to price hybrid derivatives combining New York
Mercantile Exchange-traded natural gas futures and Chicago Mercantile Exchange-traded heat-
ing degree days futures for New York. Matsumoto and Yamada study optimal design of mixed
weather derivatives on wind indices and electricity prices [155]. Benth and Ibrahim [19] develop
continuous-time models combining spot prices and logarithmic photovoltaic power production.

However, the literature becomes quite narrow if one wants to combine energy prices and
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temperature [62]. We should mention Caporin and al [44] who develop a two-dimensional daily
ARFIMA-FIGARCH model for energy price and temperature. They consider both an actuarial
and a financial approach and perform simulation-based pricing that leads to important price
differences [44]. Benth and al. [17] consider bivariate Markov-modulated additive processes with
independent non-stationnary increments to model quantos combining temperature and energy
prices and electricity and gas prices. Finally, Cucu and al. [56] develop a combined model for
natural gas spot prices and temperature. They address calibration and pricing challenges for
temperature-gas swaps.

4.2 Which underlying energy

It is easy to get lost when talking about energy commodities. Indeed, we are facing a market
with multiple locations, multiple qualifications (spot, day-ahead, on-peak, off-peak), multiple
commodities (gas, oil, electricity) and the fact that prices can be negative given the non-
storability of some commodities [45]. In addition to the latter, there is an extensive derivatives
market, including futures, options and other exotic derivatives. The futures market can be of
particular interest, as we will see that futures with short maturities are used to proxy the spot
price. Furthermore, the maturity of commodity derivatives is often a period of time rather than
a specific date, which can be up to a month for some commodities such as crude oil or natural
gas.

In the following study when we talk about the energy spot market, we mainly refer to
the electricity day-ahead auction market clearing prices [149]. Since operators need advance
notice to verify that the schedule is feasible and within the transmission constraints, continuous
electricity price trading is not possible and prices are set in the day-ahead auction market. The
price paid by each participant depends on the bidding rules, as some markets are uniform price
auctions and others are pay-as-bid auctions. It should also be noted that although all price
forecasts are made at the same time the day before, day-ahead auctions set hourly prices.

In terms of modeling, there are a number of choices to be made, and no clear consensus seems
to have emerged for this complexity. First, the choice of an arithmetic or geometric model (spot
versus log spot) has not been solved. Second, the granularity of the model can vary, as most
models are time-continuous. However, they are usually calibrated in daily data, even if hourly
data are available. Finally, there is a choice to make between modeling spot price [77] [107]
versus futures price [22] as some experts argue that the derivatives market is established on the
basis of futures markets [45].

4.3 Energy models

Before entering into coupled models, this section describes the main literature references for
electricity spot price and other commodity models. For a more in-depth review, we encourage
the reader to refer to Weron [149] and Dechatres and al. [62].
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Convenience yield models In the field of commodity finance, the most extended model is
the Gibson-Schwartz two-factor model [77]. This model includes two factors corresponding to
the commodity spot price S and the convenience return δ. It assumes risk-neutral dynamics of
the form: {

dSt = (rt − δt)Stdt+ σStdW
1
t

dδt = κ(θ − δt)dt+ σδtdW
2
t

where r is the risk-free rate, θ and σ are the long-run mean and volatility of the convenience
yield process, κ is the mean-reverting parameter, and W 1 and W 2 are Brownian motions.
Overall, the idea is that the commodity spot price is governed by a short-run noise W 1 and a
process called convenience yield δ, which integrates notions of consumption time and storage
costs [47].

Convenience yield models for electricity modelling Gibson-Schwartz models were extended
to electricity modelling by Lucia and Schwartz [107], who propose a similar two-factor model to
explain the spot electricity price S. These models are also known as Gaussian factor models. In
Lucia and Schwartz [107], S can be decomposed into a seasonally deterministic function f and
two random factors X and Y corresponding to the short-run and long-run random dynamics
of the log price such that: 

St = exp(f(t) +Xt + Yt)

dXt = −κXtdt+ σXdW
1
t

dYt = µdt+ σY dW
2
t

where κ is the mean reverting parameter of X, σX and σY are the volatilities of the processes X
and Y , µ is the drift of the process Y , and W 1 and W 2 are two Brownian motions that can be
correlated. This model was later extended to more than two factors [132] [89]. The Gaussian
models are particularly convenient here and explain the success of this model by allowing the
derivation of Black-Scholes formulas for the expected value of the derivatives.

Introduction of spikes Despite the convenience of Gaussian factor models, they are often
challenged when confronted with real data. Market data exhibit non-Gaussian stylized facts
such as spikes, heavy tails, and price clustering. Therefore, one of the proposals in the literature
has been to replace Brownian motions with more general Lévy processes such that:{

St = exp(f(t) +
∑

nX
n
t )

dXn
t = −κnXn

t dt+ σndL
n
t

where f is a seasonality function, Xn is the n-th factor with autoregressive parameter κn,
volatility σn, and Levy noise Ln. Several candidates have been proposed as Levy processes:
Compound Poisson [60], Normal Inverse Gaussian [26] and other jump processes [49] [115] [75].
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Unfortunately, none of the models has clearly established itself as a reference. Here are the
main criteria for selection:

• Ability to develop a robust estimation of parameters,

• Capacity to derive analytical or semi-analytical formulas to evaluate derivatives,

• Ability to compute sensitivity to parameters.

Stochastic volatility models Stochastic volatility models are also considered to address the
challenge of non Gaussian residuals. Kellerhals [94] apply the below model to Californian power
day-ahead market prices and calibrate it through Kalman filters:{

dSt = µSStdt+ St

√
ζtdW

1
t

dζt = µζdt+ σ
√
ζtdW

2
t

where (ζt)t≥0 is the volatility process, µS and µζ the drift parameters, σ the volatility of the
volatility process and W 1 and W 2 two Brownian motions. Deng [60] and Benth [15] also
explore similar models in a more complex framework as they include Levy processes. As shown
in Chapter 1, stochastic volatility models present very interesting properties but raise important
calibration and pricing challenges.

Structural Models In parallel to the above statistical models, alternative econometric models
have also gained success: the so-called structural models. These models are based on the
definition of supply and demand curves. The reader can refer to Carmona and Coulon [45] for
an in-depth review. Following Barlow [11], these models postulate a supply and demand curve
and establish a market price. They aim to better reproduce market behavior and allow the
inclusion of other market fundamentals such as demand, marginal fuel, maximum capacity, gas
price, or renewable production.

4.4 An overview of Chapter 2

Chapter 2 is dedicated to the development of a convincing coupled model for daily average
temperature and log spot electricity price. We leverage this coupled model to price energy and
temperature quantos and perform static portfolio hedging.

A coupled model for hybrid temperature and electricity derivatives pricing We consider
two random processes: average daily temperature (Tt)t≥0 and the day-ahead log spot price
(Xt)t≥0 such that the day-ahead spot price St = eXt . We suggest the following coupled model:{

d(Xt − µX(t)) = −κX(Xt − µX(t)) + λσTdW
T
t + dLX

t

d(Tt − µT (t)) = −κT (Tt − µT (t)) + σTdW
T
t
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where µX(·) and µT (·) represent the trend and seasonality deterministic component of (Xt)t≥0

and (Tt)t≥0 correspondingly, κX and κT the autoregressive parameters, LX and W T two inde-
pendent motions and λ is a coefficient linking the dependence between the two noises driving X
and T . The process (Tt)t≥0 follows an Orestein-Uhlebeck diffusion process and (Xt)t≥0 follows
a switching diffusion process with a Brownian motion W T and Normal Inverse Gaussian (NIG)
motion Lt. Lt is a centered Normal Inverse Gaussian process of parameters (αX , βX , δX ,mX).

This model is confronted to real data. For energy, we consider day a-head market spot energy
prices in France and North Italy from 5th January 2015 to 31st December 2018 coming from
the ENTSO-E Transparency Platform and Gestore Mercati Energetici (GME). Average daily
temperature time series are extracted from a weather data provider platform for Paris-Charles
de Gaulle airport and Milano Linate airport weather stations.

Model estimation The first sections of the chapter concentrate on model selection. First, we
argue the choice of marginals. In particular we confront the spot energy price to the literature
models presented in Subsection 4.3 and select a autoregressive Normal Inverse Gaussian process
based on our data. Second, we develop different estimation methods based on Conditional
Least Square estimation applied to the characteristic function and Maximum Likelihood and
EM-algorithm applied to an approximated distribution of the noise. Given the model coherence
we keep the Conditional Least Square estimation applied to the characteristic function.

The discussion concerning the temperature marginal is less extensive as the reader can refer
to Chapter 1 and Subsection 3.1. We perform different estimations and show that the Gaussian
model as in Benth and Benth [16] is an acceptable model given the complexity already raised by
the dependence structure. We estimate the dependence parameter λ and show the significativity
of Model ETM by comparing real and simulated dynamics through χ2 tests.

Pricing and static hedging We also address the challenge of pricing. We first consider
different quanto derivative product structures and considers its average payoff under historical
probability:

E
( t2∑

t=t1

fS(St)× fT (Tt) | Ft0

)
,

where fS and fT represent the payoff function attached on the spot energy and temperature.
The dates t1 < t2 indicates two days, and the summation is made on each day between t1 and
t2 (including these days). We consider the contract is priced at t0 ≤ t1 and claims at maturity
t2.

We consider different fS and fT to account for forward, swaps, single-sided and double
sided options on each underlying. We explicit formulas of the expected payoff for forward,
swaps and single-sided (E-HDD and E-CDD). For double sided options, we suggest first order
Taylor decomposition integrating pricing through Carr Madan [48] formulas. These formulas
are confronted with Monte Carlo simulated payoffs. We check that both methods provide
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similar results and that the explicit computations enable to gain on computation time. We also
reveal that the integration of λ enables to get within the significance intervals.

Finally we work on the risk decomposition of E-HDD and double sided quantos in the frame-
work of an autofinancing portfolio. We perform portfolio optimisation through explicit or
semi-explicit formulas. We show that for 100,000 simulate portfolio and show that we succeed
to hedge the quanto derivative on average and decrease the variance of the portfolio. We also
analyse the impact of leveraging λ.

4.5 Contributions of Chapter 2

The first contribution of this paper is the development of an efficient model describing spot
energy and average temperature dynamics. We justify this model in view of the previous
literature contributions but also in confrontation with real data. We suggest two estimation
approaches and confirm goodness of fit.

The tractability of the above combined model allows us to derive closed-form formulas for
quanto derivatives. Only few papers have proposed such formulas [17][56] and often for lin-
ear payoffs. The inclusion of double sided options is a challenge we overpass thanks to the
tractability of our model and confirm through Monte Carlo simulations.

The introduction of the dependency structure thanks to the parameter λ can also illustrate
an important aspect of the energy prices under certain conditions. For instance, we could
imagine that the weight of this factor would increase in tighter markets.

Finally, not much has been written about the risk hedging and portfolio management of
electricity and temperature quantos. Matsumoto and Yamada [110] study the optimal payoff
design and hedging effect of weather derivatives against the fluctuation of solar power pro-
duction. Similarly, Oum and Oren [122] introduce an expected utility maximization problem
that allows them to obtain the optimal payoff function at the time of contracting as well as
the optimal hedging time. They first consider a static hedging problem where they minimize
a mean-variance utility function over net profit, subject to a self-financing constraint, and
acknowledge that they will develop dynamic hedging. Lee and Oren [103] take a portfolio
equilibrium approach in a multi-commodity market and analyze the hedging effects brought
by the inclusion of weather derivatives. Alternative econometric approaches demonstrating the
effectiveness of including weather derivatives in the portfolio of electricity retailers can be found
in Lai and al [99] and Masala and al. [108]. Our approach complements the above contributions
by proving that an efficient risk management of the portfolio is possible through daily risk
decomposition.

Industrial applications Chapter 2 is more recent and has not yet led to concrete applications.
However, it responds to a business need. First, it proposes a first combined model for quanto
derivatives. This was definitely missing both in the academic literature and in business practice.
Second, it proposes an application with open formulas for option pricing, while the literature
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only addressed futures and swaps [56]. Finally, it provides a first portfolio approach that allows
to hedge the quanto products. Understanding hedging capacity is also key to portfolio risk
management and solvency requirements.
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Chapter 1

A stochastic volatility model for
temperature derivative pricing

Introduction

With the increased awareness on climate risk and its tremendous consequences on all economic
sectors, the demand for financial tools that enable to hedge this weather-related perils has sig-
nificantly increased in the last decades. The development of weather derivatives coincides with
this trend. First launched in 1997 with over the counter (OTC) contracts, the Chicago Mer-
cantile Exchange (CME) introduced standardised contracts for American cities in 1999. Until
date, the open market remains relatively small and therefore lacks of liquidity. However, OTC
market has developed between industrialists and large insurance and finance companies lead-
ing to the necessity to develop satisfactory risk valuation methodologies for those derivatives.
These derivatives usually bring on a Heating Degree Day (HDD) index or a Cooling Degree Day
(CDD) index or a Cumulative Average Temperature (CAT) index. Since most of the deals are
OTC, the market is incomplete and thus no arbitrage free pricing. Weather derivative sellers
are more interested in understanding the distribution of the payoff, and how this distribution
may change under stressed conditions. These information allow them to determine their pricing
depending on their risk appetite as well as to assess their maximum losses.

The literature on the valuation of weather derivatives mostly relies on the development of
temperature models. On the one hand, there are continuous time models. Brody et al. [38]
suggests to use an Ornstein-Uhlenbeck process driven by a fractional Brownian motion with
periodic time-dependent parameters. Benth and Benth [16] consider the same dynamics with a
classical Brownian motion with a further expansion in periodic functions and including a trend
for the temperature. Benth et al. [129] proposes a continuous time version of autoregressive
models. More recently, Groll et al. [80] have developed a continuous time model with factors
for the temperature forecasting curve. All these papers use their model to calculate the average
payoff of standard weather derivatives on HDD, CDD or CAT. On the other hand, Tol [140]
and Franses et al. [72] have proposed discrete-time GARCH models for the temperature. Cao
and Wei [43] and Campbell and Diebold [41] use this approach in view of pricing derivatives.
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Benth and Benth [129] complete this latter study and show that a low order of autoregression
is enough to fit well temperature data. Recently, Meng and Taylor [114] have proposed an
extension of this family of models that gives a joint modelling of the daily minimum and
maximum temperature.

In this study, we focus on the temperature related derivatives which have been, by far,
the most studied tools in the literature. Following the studies of Benth and Benth [28] and
many others on temperature dynamics, we develop a time inhomogeneous affine stochastic
volatility model inspired from the celebrated Heston model [84] for equity. This model integrates
additional flexibility to the temperature dynamics enabling a better time-continuous modelling
of the temperature, while keeping tractability. In particular, it is more conservative regarding
extreme events than the corresponding Gaussian model. Following the recent work of Bolyog
and Pap [34], we develop a Conditional Least Squares estimation method for its parameters,
which is easy to implement. Besides, we propose two different pricing algorithms. The first one
based on simulation enables to sample the payoff distribution and then to compute empirically
quantities such as the average payoff or quantiles of this distribution. The second one takes
advantage of the affine structure and is an adaptation of the Fast Fourier Transform method
introduced by Carr and Madan [48] to calculate the average payoff of some weather derivatives.
Besides, this second method, combined with control variates, enables to reduce considerably
the computational time (up to 105). We can then easily calculate the sensitivity of the average
payoff with respect to the different parameters, including those on the temperature volatility.
Thus, an important contribution of our model is to better assess the risk behind the volatility of
the temperature. Finally, we compare the results of this approach to price weather derivatives
with common business practices.

This study can also be leveraged by practitioners. First, our model contributes to a deeper
understanding of daily temperature models. This topic is particularly sensitive in the context
of global warming and increased extreme events. This study reviews different approaches to
trend modeling and volatility capture. Second, the study describes the step-by-step pricing of
temperature derivatives from calibration to computational implementation. This is particularly
useful for reproductive purposes and has already been implemented, with some adjustments,
in the industrial framework. Finally, the last section provides a comparison with standard
business pricing practices to bridge the gap between research and application.

The study is organised as follows. The first section presents our model for the average daily
temperature. In particular, we explain the rationale behind this model and how it goes beyond
the dynamics studied in the literature up to date. The second section focuses on the estimation
of the different parameters of our model. We develop a conditional least squares approach and
check the robustness of the fitting on simulated data. The third section concentrates on the
pricing of weather derivatives. It develops both Monte Carlo and Fast Fourier Transform algo-
rithms and studies the sensitivity to model parameters of the average payoff. It also compares
these pricing methods with current business approaches.
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1 Temperature models

1.1 A stochastic volatility model for temperature dynamics

Temperature dynamics have largely been analysed in the statistics literature and they are of
particular interest in the field of weather derivatives. These analysis apply to average daily
temperature models that are defined as the average of maximum and minimum daily temper-
ature, i.e. T = Tmax+Tmin

2
. This choice comes from the insurance contracts that typically use

this average for the daily temperature.
Different models have been suggested for the associated (Tt)t≥0 process. In the present study,

we investigate the interest of applying a stochastic volatility model for the temperature process
(Tt)t≥0. Our model extends the existing models proposed in the literature while it enables
to capture important fluctuations that were not illustrated by former models. Namely, we
introduce Model (M): 

Tt = s(t) + T̃t,

dT̃t = −κT̃tdt+
√
ζt(ρdWt +

√
1− ρ2dZt),

dζt = −K(ζt − σ2(t))dt+ η
√
ζtdWt,

(M)

where (Wt)t≥0 and (Zt)t≥0 are independent Brownian motions, κ, η,K > 0, ρ ∈ [−1, 1], σ2 is a
nonnegative function and the functions s and σ2 will be taken as in (1.2) and (1.5). We will
denote (Ft)t≥0 the filtration generated by (W,Z), so that the processes T and ζ are adapted to
it. This model integrates three components:

• First, the function s represents the trend and seasonality of the average temperature
(Tt)t≥0. This function is deterministic, bounded and continuously differentiable. In this
study, we will consider the following parametric form

s(t) = α0 + β0t+ α1 sin

(
2π

365
t

)
+ β1 cos

(
2π

365
t

)
, t ≥ 0,

see Subsection 1.2.1 for a discussion on this.

• Second, the detrended and deseasonalised temperature process (T̃t)t≥0 follows a mean-
reverting process which enables to include memory effects into the model. The parameter
κ tunes the mean-reversion speed.

• Third, the volatility of the (T̃t)t≥0 process denoted (ζt)t≥0 follows a Cox-Ingersoll-Ross
(CIR) process [55] with time-dependent parameters [87]. The process (ζt)t≥0 includes a
seasonal deterministic component σ2(·) which is supposed deterministic, bounded, con-
tinuously differentiable and nonnegative, so that the process ζ is well defined and remains
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nonnegative if ζ0 ≥ 0. In this study, we will the following parametric form for σ2:

σ2(t) = γ0 +
2∑

k=1

γk sin

(
k
2π

365
t

)
+ δk cos

(
k
2π

365
t

)
.

The parameter K tunes the mean-reversion of the volatility process and η corresponds to
the volatility of the volatility.

Here and through the study, we note f(t) (time t ≥ 0 in parenthesis) a deterministic function
and Ft (time in index) a stochastic process.

This model is somehow an adaptation of the celebrated Heston model [84]. It enables to
go beyond Ornstein–Uhlenbeck models [16] [28] [136] [72] and is an alternative to GARCH
volatility models [136] [72] [41] [129], while keeping some flexibility as we will show in the next
sections.

In the following sections we study daily average temperature data series for 8 major European
cities: Stockholm, Paris, Amsterdam, Berlin, Brussels, London, Rome and Madrid. The data
series present daily data from January 1st 1980 to December 31st 2020. After removing 29
February of leap years, this gives a time series of 14,965 observations coming from weather
stations. Table 1.12 in Appendix 4.1 summarizes the characteristics of the weather stations.
These time series were extracted from Speedwell, the main historical and settlement data
provider for weather derivatives. The company performs quality checks including physical
consistency comparison, statistical consistency tests and comparison with neighboring sources
and corrects the data if necessary. For instance, gap filling is mentioned for Rome Ciampino.
The positive aspect of using these data is that it can be considered as cleaned and reliable and
has been used to determine weather derivatives payoff in the past. The downside is that it is
private with restricted access.

1.2 Some background on temperature models

1.2.1 Ornstein–Uhlenbeck models

Interest on temperature models for weather temperature derivative pricing have arisen in the
last years. Even though there exists some alternative modeling [81] [64] [130], there seems to be
an overall agreement on the capacity of Ornstein–Uhlenbeck processes to model daily average
temperatures. These models have largely been studied by Benth and Benth [16] [28] and are
written as follows: {

Tt = s(t) + T̃t,

T̃t = −κT̃tdt+ σ(t)dWt,
(1.1)

where (Wt)t≥0 is an independent Brownian motion, s a seasonality deterministic function, κ a
nonnegative mean-reverting parameter and σ2 is a deterministic nonnegative function.
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There is no clear agreement on the form of s. Different functions have been suggested from
step functions [136] to polynomial functions [72]. However, there is a clear preference for Fourier
decomposition ([28], [85], [129]) which gives the following expression

s(t) = α0 + β0t+
Ks∑
k=1

αk sin(ξkt) +
Ks∑
k=1

βk cos(ξkt), (1.2)

where ξ = 2π
365

, ξk = kξ and Ks ∈ N∗. Here and through the study, the time unit is the day.
In this model, s integrates a trend component which enables to introduce climate change

phenomenon into our model and a periodic component through trigonometric functions. There
is a large discussion on the convenient Ks ∈ N⋆ to choose as well as on the pertinence to
introduce interaction terms [113]. For simplicity purposes, we take Ks = 1 which is the most
commonly choice (see e.g. [28] [129]) and shows significance at 5% confidence level on our
experiments.

The different parameters of the Ornstein-Uhlenbeck process can be determined by Condi-
tional Least Squares Estimation (CLSE) developed by Klimko and Nelson [95], which boils
down to minimise

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆]

)2
. (1.3)

Since we have daily data, we mostly use ∆ = 1 through the study, unless specified. The quantity

Resi∆ = T(i+1)∆ − E[T(i+1)∆|Ti∆] = T(i+1)∆ − s((i+ 1)∆)− e−κ∆(Ti∆ − s(i∆)) (1.4)

is called the residual of the regression at time i∆. Note that the same formula for the residual
holds true for Model (M). We can equally note that the autoregressive factor e−κ∆ derives
from the integration of the Ornstein-Uhlenbeck dynamics which is explicit in Equation (4.5)
in Appendix 6.2. The CLS estimators have been studied by Overbeck and Ryden [123] for
the CIR process, Li and Ma [105] for the stable CIR process, and Bolyog and Pap [34] for
Heston-like models. This approach has been used to estimate the parameters of Model (M),
See Section 2.1.

Similarly, σ represents the deterministic volatility function. For flexibility and periodicity
reasons, it can also be modeled thanks to a Fourier decomposition:

σ2(t) = γ0 +

Kσ2∑
k=1

γk sin(ξkt) +

Kσ2∑
k=1

δk cos(ξkt). (1.5)

The coefficients γ’s and δ’s are assumed to be such that σ2 is indeed a nonnegative function,
and we also exclude the trivial case σ2(t) = 0 for all t ≥ 0. For Kσ2 = 1, a straightforward
necessary and sufficient condition for having σ2 nonnegative is γ0 ≥

√
γ21 + δ21. For Kσ2 ≥ 2, a

sufficient condition is to assume γ0 ≥
∑Kσ2

k=1

√
γ2k + δ2k. This decomposition is used for example
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by [16] or [114] in a more evolved model. We also consider it in Model (M) as the function to
which the stochastic volatility mean reverts. The annual periodicity is a quite natural feature.
Besides, this choice gives a bounded continuous function whose nonnegativity is easy to check,
which is required for the definition of Model (M). In this study, Kσ2 will be taken equal to 2
but Kσ2 = 1 will also be considered.

1.2.2 Limits of Ornstein–Uhlenbeck models

Ornstein-Uhlenbeck processes, and their discrete form corresponding to Autoregressive Models,
present some important limitations.

First, they remove any potential long memory effects as today’s temperature will only depend
on the previous day’s. This weakness has been challenged through literature. In particular,
Brody et al. [38] suggest the introduction of Fractional Brownian motions. They suppose an
Ornstein-Uhlenbeck model driven by a Fractional Brownian motion of Hurst parameterH. Such
models generate temperature paths with (H − ε)-Hölder regularity, ε > 0 being an arbitrary
small real number. Following the work of Gatheral and al. [74], we perform an analysis on our
data to check whether we could observe such regularity and consider the below metric.

m(q,∆) =
1

⌊N/∆⌋

⌊N/∆⌋∑
i=1

| T̃(i+1)∆ − T̃i∆ |q

For a H-Hölder dynamics, m(q,∆) should behave as ∆qH . Figure 1.1 shows log(m(q,∆)) is
well approximated by an affine function of log(∆) for different values of q. Therefore, we can
compute the coefficient of the regression of log(m(q,∆)) by log(∆) and estimate H, see Table
1.1. We observe that this parameter is very close to 0.5, which corresponds to the regularity
of a diffusion driven by a standard Brownian Motion. This justifies why we still consider in
Model (M) a diffusion model.

City Stockholm Paris Amsterdam Berlin Brussels London Rome Madrid
Ĥ 0.498 0.476 0.497 0.477 0.456 0.510 0.525 0.539

Table 1.1: Parameter estimations for the Hurst coefficient H

Second, we also contemplated autoregressive models with higher than one autoregressive or-
der. Figure 2.1 shows the partial autocorrelation plots of (T̃t)t≥0 and the residuals (Rest)t≥0

(see Eq. (1.4)) for the city of Paris in the first 1, 000 observed days. While we can consider
a second significant correlation term, its coefficient should be pretty small. Higher than two
autoregressive terms are clearly non significant. Therefore, we studied the possibility of having
two time delay Ornstein-Uhlenbeck dynamics. However the second order autoregressive coeffi-
cients were small and unstable. We hence decided to keep a model with a unique autoregressive
terms which is coherent with Franses ad al. [72], Diebold and Campbell [41] and Taylor and
Buizza [136] findings.
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Figure 1.1: Smoothing plots of the temperature dynamics for Stockholm and Paris (left and
right)

Third, as can be observed in Figure 1.3, daily temperature present erratic noises with possible
volatility autoregression or clustering.

To analyse this, we focus on the residuals (1.4) and compare the historical ones to those
obtained on 9 simulations of the same 40 years period. More precisely, for each simulation, we
have plotted the curve (Ressim(i) , Res

obs
(i) )1≤i≤40×365, where Ressim(i) (resp. Resobs(i) ) is the ordered

statistic of the residuals obtained with the simulated (resp. observed) temperature. In the
center of the distribution, the points are on the line y = x in red, which indicates a very good
fit by the model. Instead, we see that for small (resp. large) values, the curves are slightly below
(resp. above) the red line which indicates that the extreme events produced by the Ornstein-
Uhlenbeck model are smaller than the ones observed. The residuals given by Model (1.1)
present noticeable deviations from the historical ones as can be seen in the qqplots: Figure 1.4
shows slight skewness but the main observation remains that the observed tails are heavier than
the simulated ones, especially for the left tail. Different authors emphasise skewness deviation
of residuals as well as volatility clustering [72] [113]. This skewness and heavy tail issues are
coped with different methods either thanks to the fitting of a skew-t distribution on residuals
[68] or through GARCH models that enable to capture dependencies on volatility and can lead
to skewed residual qqplots. Here, anticipating on our estimation results, we have plotted in
Figure 1.5 the qqplot on the residuals between those observed and 9 simulations of Model (M)
with estimated parameters. We observe again a very good fit of the center distribution, but
the curves are are slightly above (resp. below) the red line y = x for small (resp. large)
values, which means that Model (M) produces larger extreme events than the ones observed.
Thus, compared with the Ornstein-Uhlenbeck model, we note that Model (M) produces heavier
tails, that are slightly heavier to those observed on our 40 years data set. Thus, Model (M) is
more conservative on extreme events, which is an interesting feature when dealing about risk
quantification.
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Figure 1.2: Partial autocorrelation plots of (T̃t)t∈N and of the residuals Rest (see Eq. (1.4)) for
the city of Paris in the first 1, 000 observations. The dashed red line corresponds to
the 95% confidence interval from which we can consider the partial autocorrelation
coefficient is significantly different from 0.

Figure 1.3: Average temperature and trend on temperature from 2018 to 2020 in Stockholm
and Paris (from left to right respectively)

1.2.3 GARCH models

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models [33] represent
a first response to these limits. They enable to integrate stylized features of temperature times
series such as skewness, tail heaviness and volatility clustering. Let us define the following
temperature dynamics for t ∈ N:
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Figure 1.4: Quantile quantile plots for observed and 9 simulated residuals of (1.3) for Stockholm,
Paris and Rome for the Ornstein-Uhlenbeck model.

Figure 1.5: Quantile quantile plots for observed and 9 simulated residuals of (1.3) for Stockholm,
Paris and Rome for Model (M).


Tt = s(t)− µ(Tt−1 − s(t− 1)) + Zt

Zt =
√
ζtϵt, (ϵt)t≥0 ∼ N (0, 1) i.i.d.

ζt = σ2(t) +
∑p

k=1 λk(Zt−k − σ2(t− k))2 +
∑q

l=1 θlζt−l,

(1.6)

with λk ≥ 0 for 1 ≤ k ≤ p, θl ≥ 0 for 1 ≤ l ≤ q, and s and σ2 are defined respectively by (1.2)
and (1.5) with parameters γ’s and δ’s such that σ2(t) ≥ 0 for all t ≥ 0. Thus, (ζt) is indeed a
nonnegative process.

Different authors have worked on the application of these GARCH models particularly on
GARCH(1,1) to temperature process fitting [113] [136], [72] [129] [41]. While these models
enable to integrate the complexity of the series we will see that they also present considerable
limits.

First, the analysis of autocorrelation and partial autocorrelation plots on squared corrected
residuals show evidence of the necessity to integrate first order autocorrelation on the volatility
model. This is coherent with the previously cited papers. However, it should be noted that the
significance of the first order autocorrelation term remains small even for subsamples. We can
therefore expect that it has a limited impact into the quality of multi-day forecasts and pricing.

Second, the GARCH volatility model and its continuous equivalents integrate an important
hypotheses: they suppose that temperature and volatility are driven by the same noise (with a
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time shift). In Model (M), this would formally correspond to have ρ ∈ {−1, 1}. Given the com-
plexity of meteorological dynamics there is no reason explaining why temperature and volatility
on temperature should be driven by the same noises. Model (M) represents a generalization of
average temperature dynamics that enables to integrate more flexibility on the temperature’s
volatility.

Finally, Model (M) presents a clear advantage as it provides closed form formula for the
pricing of temperature indices deriving from average temperature models. While these closed
formulas can only be used for some derivatives depending on the payoff structure, they can
be combined with Monte Carlo approaches to speed up derivative’s pricing. In particular, this
document will develop the use of control variates methods to reduce the variance of Monte
Carlo approaches, see Subsection 3.3.4.

To sum up, Model (M) is aligned with the average temperature models that have been con-
sidered in the literature. First, from an Ornstein–Uhlenbeck process, it integrates a seasonal
component corresponding to the natural climatology and climate change trend. The Orn-
stein–Uhlenbeck model also enables to include an autoregressive component upon which agree
both literature and statistical tools. However, the residuals of this first model show devia-
tion from normal hypotheses with skewness, tail heaviness and volatility clustering patterns.
GARCH models partly answer to these limits and integrate an autoregressive component on
the volatility process which is statistically observed. Our model is another natural extension
to the Ornstein-Uhlenbeck dynamics that gives a larger flexibility on the volatility process.
Model (M) presents two additional advantages. First, unlike ARMA and GARCH models it is
a time-continuous model. While this might not be necessary when we only have daily data, it
can be a significant advantage if this model is coupled with a model for energy or commodi-
ties that are traded continuously. We could foresee, for example, combining this model with
other commodity models to identify hedging opportunities or price hybrid derivatives. Second,
Model (M) is an affine model for which efficient pricing methods based on Fourier techniques
can be implemented. In particular, we show in Section 3 how to use the Fast Fourier Transform
for pricing, which translates into a significant competitive advantage.

2 Fitting Model (M) to historical data

The previous section has motivated the interest of the stochastic volatility model (M) for the
temperature dynamics. The pertinence of this new model is however related to our capacity to
well estimate its parameters. This section focuses on this challenge as well as on the robustness
of the estimation. Contrary to financial derivatives, we do not consider the calibration of our
model to market prices. First, as pointed by Weagley [146] the market volume of weather
derivatives is quite low and the transactions are mostly Over The Counter (OTC). Market
prices are thus arguable. Besides, the underlying of these contracts is the real temperature,
which is not a traded asset. There is therefore no justification of a risk-neutral pricing of weather
derivatives. For these reasons, we prefer to estimate our model to historical data and then use
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it to determine the distributions of weather derivatives payoffs under the real probability.

2.1 Parameter estimation

Like Overbeck and Ryden [123] and Bolyog and Pap [34], we implement the conditional least
squares estimation (CLSE) which consists in minimising the observed value against the pre-
dicted conditional expectation. Under general assumptions, Klimko and Nelson [95] have shown
that CLS estimators are strongly consistent, with a speed of convergence close to O(N−1/2),
where N is the number of observations.

It can be noted that Bolyog and Pap suggest in [34], on a time-homogeneous model that is
similar to (M), to simultaneously minimize the conditional temperature and volatility expecta-
tions, i.e. to minimize

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆, ζi∆]

)2
+
(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2
,

with respect to κ, K, and the (parameterised) functions s(·) and σ2(·). As already remarked
in [34], the estimators of the parameters κ,K, s(·), σ2(·) do not involve the values of η and ρ. We
can thus do the estimation without knowing these values, and then estimate separately the pa-
rameters η and ρ. Besides, Model (M) corresponds to a special case of the dynamics considered
by Bolyog and Pap where the volatility is absent from the mean-reverting term of the tempera-
ture process (this corresponds to β = 0 in [34]). In this case, E[T(i+1)∆|Ti∆, ζi∆] = E[T(i+1)∆|Ti∆],
and the minimisation problem is equivalent to minimise

∑N−1
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆]

)2 and∑N−1
i=0

(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2 separately, which we do here.
Thus, Paragraph 2.1.1 deals with the estimation of κ and s(·), Paragraph 2.1.2 brings on the

estimation of K and σ2(·), while Paragraph 2.1.3 focuses on the estimation of η and ρ.

2.1.1 Parameter estimation for κ and s(·)

To estimate κ and s(·), we are thus interested by the following minimisation problem:

min
(κ, α0, β0, α1, β1) ∈ R5

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆]

)2
,

that brings on temperature process (Tt)t≥0. Proposition 6.1 solves this problem and gives
explicit formulas for κ̂, α̂0, β̂0, α̂1 and β̂1. Table 1.2 shows the estimated parameters for the 8
European cities. All the parameters are significant at 5% confidence level (their 95% confidence
interval do not cross zero) . We can also add that there is a certain coherence between the
different European cities for the mean-reverting parameter. In addition, given the range of
values close to 0.25 we can also derive that the temperature memory effect lasts for around
4 days. These results are aligned with the literature, see e.g. [28]. We also notice that the
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estimated values of β0 are around 0.00013, which corresponds to a warming of about 0.5°C
every 10 years.

City α̂0 β̂0 α̂1 β̂1 κ̂

Stockholm 6.678 0.00016 -4.564 -9.142 0.192
Paris 10.868 0.00013 -3.540 -6.993 0.230
Amsterdam 9.402 0.00013 -3.509 -6.426 0.228
Berlin 9.190 0.00013 -3.863 -8.834 0.203
Brussels 9.746 0.00012 -3.467 -6.761 0.195
London 10.670 0.00011 -3.345 -6.035 0.260
Rome 14.826 0.00013 -4.733 -7.522 0.228
Madrid 13.961 0.00010 -4.572 -8.608 0.221

Table 1.2: Parameter estimations for the seasonal function s and mean reverting κ.

2.1.2 Parameter estimation for K and σ(·)

An important challenge we face when estimating the parameters of the process (ζt)t≥0 is that
the instantaneous volatility process is, per se, unobservable. There is a large literature on this
issue, we mention here [2] and [10] that deal with the Heston model. Following Azencott et al.
approach [10], we approximate the unobservable volatility ζ by the series of realized volatilities
ζ̂. These realized volatilities ζ̂ correspond to the observed volatility on a time window of Q-days
such that we get:

ζ̂iQ∆ :=
1

Q

Q∑
j=1

2κ̂

1− e−2κ̂∆

(
T̃(iQ+j)∆ − e−κ̂∆T̃(iQ+j−1)∆

)2
, i ∈ {0, . . . , ⌊N/Q⌋ − 1}. (2.1)

Here, ζ̂iQ∆ corresponds to the realized volatility on [iQ∆, (i + 1)Q∆] and we have thus I =
⌊N/Q⌋ different values. The autoregressive factor comes from the integration of the temperature
dynamics of Model (M) which is explicit in Equation (4.5) in Appendix 6.2. The correction
factor 2κ̂

1−e−2κ̂∆ , which is not present in [10], is related to the mean-reverting behaviour of the
temperature and is justified by Remark 2.1. Since 2κ̂

1−e−2κ̂∆ ≈∆→0
1
∆

, ζ̂iQ∆ is close to the usual
quadratic variation, but the difference is not negligible as ∆ cannot be smaller than one day
on observed data.

Remark 2.1. Let us suppose that ζt = ζiQ∆ for t ∈ [iQ∆, (i+1)Q∆]. Then, for j ∈ {1, . . . , Q},
we have

T̃(iQ+j)∆ − e−κ̂∆T̃(iQ+j−1)∆ =
√
ζiQ∆

∫ (iQ+j)∆

(iQ+j−1)∆

e(iQ+j)∆−sdW ρ
s ,

with W ρ = ρW +
√
1− ρ2Z. Since

∫ (iQ+j)∆

(iQ+j−1)∆
e(iQ+j)∆−sdW ρ

s ∼ N
(
0, 1−e−2κ̂∆

2κ̂

)
is indepen-

dent of ζiQ∆, we get that 1
ζiQ∆

∑Q
j=1

2κ̂
1−e−2κ̂∆

(
T̃(iQ+j)∆ − e−κ̂∆T̃(iQ+j−1)∆

)2
follows a chi-squared
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distribution with Q degrees of freedom. Thus, if ζt were frozen for t ∈ [iQ∆, (i + 1)Q∆], ζ̂iQ∆

would be an unbiased estimator, i.e. E[ζ̂iQ∆|FiQ∆] = ζiQ∆.

Estimation of σ2 and K. Once again, we use the conditional least squares method (CLSE)
to simultaneously compute the parameters of the deterministic component of the volatility and
the mean-reversion coefficient. For this, we would like to minimise

N−1∑
i=0

(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2
and use Proposition 4.2. The convergence of such kind of estimators for a time inhomogeneous
CIR is given by Theorem 1. However, since the volatility is not directly observed, we minimise
the difference of the realized volatility and its conditional expectation given by the previously
realised volatilities. Namely, we apply Proposition 4.2 to minimise

I−2∑
i=0

(
ζ(i+1)Q∆ − E[ζ(i+1)Q∆|ζiQ∆]

)2
,

replacing the volatility ζiQ∆ by the realized volatility ζ̂iQ∆ . This leads to the following estima-
tors of the volatility dynamics of Model (M):

γ̂0 =
θ̂0

1− ϕ̂0

K̂ = − 1

Q∆
ln(ϕ̂0)

γ̂k =
θ̂kDk − ϕ̂kBk

AkDk − CkBk

δ̂k =
θ̂kCk − ϕ̂kAk

CkBk − AkDk

(2.2)

where k ∈ {1, 2} and

Ak = K̂
K̂(cos(ξkQ∆)− e−K̂Q∆) + ξk sin(ξkQ∆)

K̂2 + ξ2k

Bk = −K̂ K̂ sin(ξkQ∆)− ξk(cos(ξkQ∆)− e−K̂Q∆)

K̂2 + ξ2k

Ck = K̂
K̂ sin(ξkQ∆)− ξk(cos(ξkQ∆)− e−K̂Q∆)

K̂2 + ξ2k

Dk = K̂
K̂(cos(ξkQ∆)− e−K̂Q∆) + ξk sin(ξkQ∆)

K̂2 + ξ2k
,
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and

ϑ̂ := (θ̂0, ϕ̂0, θ̂1, θ̂2, ϕ̂1, ϕ̂2)
T =

(
I−2∑
i=0

X̂ ′
iQ∆X̂

′T
iQ∆

)−1(I−2∑
i=0

X̂ ′
iQ∆ζ̂(i+1)Q∆

)
, (2.3)

with X̂ ′
iQ∆ = (1, ζ̂iQ∆, sin(ξ1iQ∆), sin(ξ2iQ∆), cos(ξ1iQ∆), cos(ξ2iQ∆))T .

Table 1.3 summarises the numerical implementation of the parameter estimation for our
eight cities. We can again observe a coherence between the different cities. It can also be noted
that γ̂0 has more importance in the σ2 than the trigonometric components. Finally the mean
reverting parameter K is more unstable than κ through the cities. Its influence can differ from
one to 7 days depending on the city.

City γ̂0 γ̂1 γ̂2 δ̂1 δ̂2 K̂

Stockholm 4.790 0.684 -0.450 1.401 0.704 0.147
Paris 5.603 0.201 -0.266 0.358 0.459 0.396
Amsterdam 4.690 0.503 -0.524 0.500 0.604 0.335
Berlin 5.857 0.646 -0.542 0.410 0.578 0.255
Brussels 4.490 0.266 -0.337 0.298 0.431 0.255
London 4.387 -0.014 -0.314 0.479 0.174 0.774
Rome 3.086 0.212 -0.391 1.335 0.373 0.332
Madrid 4.164 0.418 -0.267 0.746 0.443 0.269

Table 1.3: Parameter estimations for the seasonal function σ2 and volatility mean reverting
parameter K.

We also tested the choice of setting Kσ2 = 1. Table 1.4 summarizes the estimation of the
different parameters for Kσ2 = 1. We can see that the impact on the estimations of γ0, γ1, δ1
and K is small or nill. Hence, while all the parameters γ2 and δ2 are significant, we find that
setting Kσ2 = 1 or 2 has a rather small impact in the reasoning that follows.

City γ̂0 γ̂1 δ̂1 K̂

Stockholm 4.790 0.674 1.408 0.137
Paris 5.603 0.198 0.359 0.332
Amsterdam 4.691 0.496 0.509 0.256
Berlin 5.857 0.644 0.416 0.226
Brussels 4.491 0.265 0.300 0.233
London 4.387 -0.022 0.479 0.430
Rome 3.086 0.198 1.338 0.273
Madrid 4.164 0.414 0.749 0.243

Table 1.4: Parameter estimations for the seasonal function σ2 and mean reverting K.
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In addition, Figure 1.6 shows the plots corresponding to the observed volatility and estimated
seasonality on volatility. We can see that while the seasonality does not seem negligible σ2 is far
from completely explaining the observed volatility. Indeed, we observe important fluctuations
around σ2(t) on the dynamics of ζ.

Figure 1.6: Realized volatility and trend on observed volatility from 2018 to 2020 in Stockholm
and Paris (from left to right respectively).

2.1.3 Estimation of the parameters η2 and ρ

Estimation of the volatility of volatility η2 While in the previous section we use the con-
ditional expectation to estimate σ2 and K, here the idea is to implement a similar approach
based on conditional variance. Namely, we want to solve:

min
η2

N−1∑
i=0

(
(ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆])2 − E[

(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2 |ζi∆])2
Note that Li and Ma [105] or Bolyog and Pap [34] do not study the properties of such conditional
second moment estimators. Here, we show in Theorem 2 the convergence of such estimator for
a time-dependent CIR process, when the values ζi∆ are directly observed.
Again, we have to work with the estimated volatility ζ̂iQ∆ since we do not directly observe the
process ζ. We then apply Proposition 4.3 with the previously estimated parameters K̂, γ̂, δ̂.
This leads to the following estimator

η̂2 =

∑I−2
i=0 ŶiQ∆(ζ̂(i+1)Q∆ − ϑ̂T X̂ ′

iQ∆)
2∑I−2

i=0 Ŷ
2
iQ∆

, (2.4)
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where ϑ̂T and X̂ ′
iQ∆ are defined by (2.3) and

ŶiQ∆ = θ′0 + ϕ′
0ζ̂iQ∆ +

2∑
k=1

θ′k sin(ξkiQ∆) +
2∑

k=1

ϕ′
k cos(ξkiQ∆)

with 

θ′0 = γ̂0
(1− e−K̂Q∆)2

2K̂

ϕ′
0 =

e−K̂Q∆

K̂
(1− e−K̂Q∆)

θ′k = γ̂kK̂
K̂[A′

k − ϕ′
0] + ξkB

′
k

K̂2 + ξ2k
− δ̂kK̂

K̂B′
k − ξk[A

′
k − ϕ′

0]

K̂2 + ξ2k

ϕ′
k = γ̂kK̂

K̂B′
k − ξk[A

′
k − ϕ′

0]

K̂2 + ξ2k
+ δ̂kK̂

K̂[A′
k − ϕ′

0] + ξkB
′
k

K̂2 + ξ2k
,

and 
A′

k =
2K̂[cos(ξkQ∆)− e−2K̂Q∆] + ξk sin(ξkQ∆)

4K̂2 + ξ2k

B′
k =

2K̂ sin(ξkQ∆)− ξk(cos(ξkQ∆)− e−2K̂Q∆)

4K̂2 + ξ2k

and (γ̂0, K̂, γ̂k, δ̂k) defined by Equation (2.2).

city Stockholm Paris Amsterdam Berlin Brussels London Rome Madrid
η̂2 0.629 1.043 0.929 0.884 0.713 1.605 0.988 0.737

Table 1.5: Parameter estimations for the volatility of volatility η2.

The numerical application of the above formula applied to our dataset gives the values col-
lected in Table 1.5. First, comparing Tables 1.3 and 1.5 enables to observe the two components
of the volatility dynamics, the mean reversion component and the pure noise. They both have
comparable magnitude and therefore both contribute significantly to the volatility dynamics.
The mean reverting coefficients are rather small, which is consistent with the fluctuations ob-
served in Figure 1.6. Second, Table 1.5 shows a certain coherence in terms of magnitude for all
the European cities.

Estimation of the correlation ρ The last step consists in estimating the correlation ρ. The
idea this time is to use conditional covariance to estimate this parameter, and Proposition 4.4
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gives the minimiser of the following problem:

min
ρ

N−1∑
i=0

(
(T(i+1)∆ − E[T(i+1)∆|Fi∆])(ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆])

− E
[
(T(i+1)∆ − E[T(i+1)∆|Fi∆])(ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆]

∣∣∣Fi∆

])2
.

Again, since we do not observe the volatility, we use Proposition 4.4 with the estimated volatility
ζ̂iQ∆ and the previously estimated parameters κ̂, α̂, β̂, K̂, γ̂, δ̂, η̂2 given by Proposition 6.1, (2.2)
and (2.4). This leads to

ρ̂ =

∑I−2
i=0 Ŷ

′
iQ∆(T(i+1)Q∆ − λ̂TXiQ∆)(ζ̂(i+1)Q∆ − ϑ̂T X̂ ′

iQ∆)∑I−2
i=0 (Ŷ

′
iQ∆)

2
,

where λ̂ and Xi∆ are defined by (4.3) with N := I − 1, ϑ̂ and X̂ ′
iQ∆ are defined by (2.3), and

Ŷ ′
iQ∆ = θ′′0 + ϕ′′

0 ζ̂iQ∆ +
∑

k θ
′′
k sin(ξkiQ∆) +

∑
k ϕ

′′
k cos(ξkiQ∆), with

θ′′0 = η̂γ̂0

(
1− e−(κ̂+K̂)Q∆

κ̂+ K̂
+
e−(κ̂+K̂)Q∆ − e−K̂Q∆

κ̂

)

ϕ′′
0 = η̂e−K̂Q∆1− e−κ̂Q∆

κ̂

θ′′k = η̂γ̂kK̂
K̂(A′′

k − ϕ′′
0) + ξkB

′′
k

K̂2 + ξ2k
− η̂δ̂kK̂

K̂B′′
k − ξk(A

′′
k − ϕ′′

0)

K̂2 + ξ2k

ϕ′′
k = η̂γ̂kK̂

K̂B′′
k − ξk(A

′′
k − ϕ′′

0)

K̂2 + ξ2k
+ η̂δ̂kK̂

K̂(A′′
k − ϕ′′

0) + ξkB
′′
k

K̂2 + ξ2k
,

and 
A′′

k =
(K̂ + κ̂)(cos(ξkQ∆)− e−(K̂+κ̂)Q∆) + ξk sin(ξkQ∆)

(K̂ + κ̂)2 + ξ2k

B′′
k =

(K̂ + κ̂) sin(ξkQ∆)− ξk(cos(ξkQ∆)− e−(K̂+κ̂)Q∆)

(K̂ + κ̂)2 + ξ2k
.

City Stockholm Paris Amsterdam Berlin Brussels London Rome Madrid
ρ̂ -0.000 -0.006 -0.010 -0.013 -0.014 -0.011 0.023 -0.005

Table 1.6: Parameter estimations for the correlation ρ.

The numerical application of the above formula applied to our data sets gives the values col-
lected in Table 1.6. We observe that the correlation is close to zero for all the cities. Therefore,
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for simplification purposes, we will consider on the following of this document that ρ equals
zero. This finding also questions the pertinence of GARCH model (1.6) that corresponds to
ρ ∈ {−1, 1} since the temperature and its volatility are driven by the same noise.

2.2 Robustness of estimators

In the previous subsection, we have obtained conditional least squares estimators for the differ-
ent parameters of Model (M). All the above expressions have been computed by discretizing
the processes (T̃t)t≥0 and (ζt)t≥0. Theoretically speaking, Overbeck and Ryden [123] and Bolyog
and Pap [34] have proven the convergence of the CLS estimators for the Cox-Ingersoll-Ross
and a generalized Heston model. Their proof is mainly based in ergodic arguments. In Ap-
pendix 4.6, we prove the consistency of CLSE for a time inhomogeneous Cox-Ingersoll-Ross
process.

However, to estimate the parameters of the volatility dynamics, we have approximated the
unobservable volatility ζ by the realized volatility ζ̂. Azencott, Ren and Timofeyev [10] have
deeply studied the convergence modes of the volatility process ζ̂ to the instantaneous process ζ
as well as the estimated realized estimators (K, σ, η) under a classic Heston framework. Under
boundary and continuity hypothesis on T and ζ, uniform convergence of ζ̂ to ζ over [0, T ] in L2

is proven. Probability convergence of estimators is also proven for moments based estimators.
The extension of these convergence properties to our particular model is left as a further work.
In this section, we test numerically the robustness of our estimators and check their accuracy
on simulated data.

2.2.1 Methodology

Robustness of the estimators is checked through simulated data. Essentially, we simulate data
series with the model that have the same length as our data set (40 years) and we check that we
find back the parameters by using the CLS estimators. The detailed methodology is presented
in Appendix 4.2.

As a first qualitative check, we have represented in Figure 1.7 an example of simulated
temperature for Paris. The simulated paths looks similar to the observed ones. In the following
paragraphs, we will test our capacity to estimate the values of the parameters and discuss the
choice of averaging-time windows Q.

2.2.2 Estimation of parameters κ, s(·) related to the simulated temperature T

The estimation of κ and s(·) is a priori easy since it relies on the temperature that is directly
observable. Table 1.8 summarizes the estimators of the parameters related to the temperature.
Figure 1.8 corresponds to the related temperature plot for Stockholm and Paris. We can see
that all the estimated parameters remain very close to the original values. We can thus conclude
that the estimation of the parameters of the temperature is robust enough to be reliable.
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Figure 1.7: Plots of simulated temperature and volatility processes for Paris and (K, η2) =
(0.396, 1.043). On the left, we plot the observed temperature T (blue), the simulated
temperature Ts (light blue) and the trend and seasonal function s. On the right,
we plot the observed volatility ζ̂ (blue), defined here as the 10-lag moving average
of ζ, the simulated volatility ζs (light blue) and the seasonal volatility function σ2.

City α0 α̂0 β0 β̂0 α1 α̂1 β1 β̂1 κ κ̂

Stockholm 6.678 6.966 0.00016 0.00016 -4.564 -4.564 -9.142 -9.142 0.192 0.192
Paris 10.868 10.733 0.00013 0.00013 -3.540 -3.540 -6.993 -6.993 0.230 0.235

Amsterdam 9.402 9.353 0.00013 0.00013 -3.509 -3.509 -6.426 -6.426 0.228 0.220
Berlin 9.190 9.472 0.00013 0.00013 -3.863 -3.863 -8.834 -8.834 0.203 0.200

Brussels 9.746 9.350 0.00012 0.00012 -3.467 -3.467 -6.761 -6.761 0.195 0.192
London 10.670 10.659 0.00011 0.00011 -3.345 -3.345 -6.035 -6.035 0.260 0.270

Rome 14.826 14.751 0.00013 0.00013 -4.733 -4.733 -7.522 -7.522 0.228 0.224
Madrid 13.961 13.763 0.00010 0.00010 -4.572 -4.572 -8.608 -8.608 0.221 0.232

Table 1.7: Estimation of temperature parameters from the simulated temperature path.

2.2.3 Estimation of K, σ2(·) and η2 on the simulated realized volatility ζ̂

Let us recall that instantaneous volatility ζ is not observable and we estimate it by ζ̂ defined
in Equation (2.1). In this paragraph, we apply the same process as in Section 2.1 to simulated
data.

We first focus on the effect of Q, i.e. the size of the averaging window (2.1), on the estimation
of parameters. For simplicity purposes, we start by setting the trigonometric coefficients of σ2

to 0 and study the impact on K and η2. For each time window Q and city, we perform 50, 000
simulations of daily volatility ζ, by using (4.1). We average this series trough the time window
Q and then estimate the corresponding (K, η2). This exercise enables to analyse the influence
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City α0 α̂0 β0 β̂0 α1 α̂1 β1 β̂1 κ κ̂

Stockholm 6.678 6.939 0.00016 0.00015 -4.564 -5.492 -9.142 -8.355 0.192 0.185
Paris 10.868 10.712 0.00013 0.00015 -3.54 -4.276 -6.993 -6.577 0.230 0.229

Amsterdam 9.402 9.647 0.00013 0.00009 -3.509 -4.110 -6.426 -6.107 0.228 0.225
Berlin 9.190 9.429 0.00013 0.00011 -3.863 -4.804 -8.834 -8.325 0.203 0.197

Brussels 9.746 10.011 0.00012 0.0001 -3.467 -3.954 -6.761 -6.232 0.195 0.195
London 10.670 10.830 0.00011 0.0001 -3.345 -4.059 -6.035 -5.439 0.260 0.259

Rome 14.826 14.781 0.00013 0.00013 -4.733 -5.522 -7.522 -6.933 0.228 0.235
Madrid 13.961 14.081 0.00010 0.00008 -4.572 -5.377 -8.608 -7.95 0.221 0.224

Table 1.8: Estimation of temperature parameters from the simulated temperature path.

Figure 1.8: Estimation of the trend and seasonal function s on both real temperature T (blue)
and simulated temperature Ts (light blue) for Stockholm (left) and Paris (right) and
Q = 10. This function is plotted in red (resp. brown) when estimated on observed
(resp. simulated) data.

of the time window Q on the capacity to well estimate (K, η2).
Table 1.9 and 1.10 represent different estimates of (K, η2) depending on window width Q.

First, we can observe that for small Q, (K, η2) is overestimated due to the preponderance
of the noise related to volatility estimation. On the contrary, for large values of Q, (K, η2) is
underestimated due to the averaging effect. Therefore there is a need to find a trade-off between
the effect of the noise and the effect of the window averaging. Depending on the city the most
efficient Q can range from 5 to 10.

We now focus on the impact of Q on the estimation of the function σ2. We have plotted in
Figure 1.9 the estimated trend with the original one for Q = 5 and Q = 12. We see that σ2

is correctly estimated, independently of Q. From this numerical study, the choice of Q = 10
appears to be quite reliable. Of course, as one may expect, the parameters are not as well
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City K̂ K̂Q=1 K̂Q=2 K̂Q=5 K̂Q=8 K̂Q=10 K̂Q=12

Stockholm 0.147 2.261 0.886 0.301 0.190 0.157 0.140
Paris 0.396 2.853 1.336 0.552 0.403 0.286 0.265

Amsterdam 0.335 2.578 1.159 0.463 0.345 0.266 0.260
Berlin 0.255 2.590 1.083 0.408 0.278 0.243 0.208

Brussels 0.255 2.540 1.042 0.401 0.262 0.228 0.208
London 0.774 3.363 1.637 0.880 0.651 0.459 0.464

Rome 0.332 2.381 1.059 0.433 0.303 0.264 0.216
Madrid 0.269 2.495 1.067 0.407 0.278 0.260 0.219

Table 1.9: Estimation of K for different averaging time windows Q.

City η̂2 η̂2Q=1 η̂2Q=2 η̂2Q=5 η̂2Q=8 η̂2Q=10 η̂2Q=12

Stockholm 0.629 56.229 12.288 2.123 0.896 0.644 0.499
Paris 1.043 56.429 13.385 2.506 1.156 0.690 0.531

Amsterdam 0.929 46.609 11.364 2.013 1.010 0.625 0.528
Berlin 0.884 61.162 13.930 2.377 1.070 0.795 0.580

Brussels 0.713 47.390 10.652 1.921 0.834 0.599 0.474
London 1.605 45.348 11.535 2.608 1.236 0.723 0.588

Rome 0.988 35.879 8.962 1.686 0.787 0.561 0.407
Madrid 0.737 43.787 10.316 1.862 0.809 0.657 0.430

Table 1.10: Estimation of η2 for different averaging time windows Q

estimated as for κ and s(·). They still however give the correct magnitude of the parameters,
which is acceptable for risk management. Since we are then interested in evaluating derivative
products, we will then analyse the sensitivity to these parameters, see Section 3.4, which can
be done efficiently in Model (M).

3 Application to pricing weather derivatives

The previous sections concentrate on modeling the daily average temperature and on the esti-
mation of the parameters of the model. However, the final objective of our model is to better
assess the risk related to weather temperature derivatives. This section will focus on how we
evaluate the average payoff of these derivatives and how Model (M) improves our capacity to
understand their risk.

47



A stochastic volatility model for temperature derivative pricing

Figure 1.9: Plots of observed volatility process ζ̂ (blue) and simulated volatility processes ζ̂s
(dark blue) for Paris for averaging windows Q equals 5 (left) and 12 (right). The
function σ2 is in green while the estimated functions for Q = 5 and Q = 12 are in
dark green.

3.1 Temperature derivatives

3.1.1 Average temperature indices

Temperature derivatives are financial products used to hedge weather risk. The covers are
often based on an index corresponding to a proxy of the buyer’s financial risk. This index cor-
responds to an aggregate of a more granular meteorological parameter which in this document
is the average daily temperature. There exist different possible indices, the main ones being
HDD (Heating Degree Days), CDD (Cooling Degree Days) and CAT (Cumulative Average
Temperature):

HDD :=

t2∑
t=t1

max(0, Tb − Tt), CDD :=

t2∑
t=t1

max(0, Tt − Tb), CAT :=

t2∑
t=t1

Tt,

where Tt corresponds to the average daily temperature on day t, Tb to a base temperature, t1
to the inception date and t2 the exit date of the contract. We will call risk period the time
period between t1 and t2.

Physically speaking, the HDD corresponds to the cumulative degrees needed to heat a given
building. Hence the base temperature Tb corresponds to the temperature at which heating is
probably switched on and the cumulative HDD measures the demand on energy of the building.
The base temperature Tb varies depending on the country. In the EU, Tb is often taken as equal
to 15.5◦C while in the US it corresponds to 65◦F . Symmetrically, CDD corresponds to the
energy demand for air conditioning. Finally, CAT corresponds to cumulative temperature
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degrees which is related to the energy demand between t1 and t2.
In the following of this document, we will focus on the HDD index however the methodology

presented can be applied to all average temperature related indices. Particularly for options
on the CAT, the Fast Fourier Transform approach would enable to get a very efficient pricing
method.

3.1.2 Payoff function

Weather derivatives are used to hedge weather risk. They trigger a payment depending on
an aggregate temperature index. The payment is defined given a payoff structure. Standard
payoff structures correspond to capped put or call options applied to the aggregate index. For
simplification purposes we will suggest the payoff structure:

min((HDD −HDDstrike)
+, L). (3.1)

As we want to price this kind of instruments our objective is to understand the characteristics
of the payment distribution (expectation, VaR and CVaR) under the real world probability. In
particular, we consider the average payoff of the derivative

E[D(t0, t2)min((HDD −HDDstrike)
+, L)], (3.2)

where D(t0, t2) is a discount rate that will be taken equal to 1 in this study. Note that this is
not a fair price: there is no market dealing HDD continuously and therefore the classical pricing
theory of Black and Scholes does not apply. The calculation of the average payoff (3.2), as well
as other indicators on the distribution of min((HDD − HDDstrike)

+, L) such as the variance
and quantiles, is used in practice to propose a price over the counter. Thus, a very accurate
evaluation of (3.2) for a given model is not really at stake: one is more interested in evaluating
risk and how the average payoff may change under stressed parameters.

Finally, there is no consensus on how to choose HDDstrike. However, it is a market practice
to use quantiles, and particularly historical quantiles of the index, to define this strike. In the
present study, we consider the 90% quantile which is within market practices.

3.2 Monte-Carlo Approach

A first pricing approach to identify the distribution of payments is to simulate temperature
paths based on the discretization schemes in (4.1) for ∆ = 1. We proceed as follows:

1. Simulate temperature paths starting from the pricing date t0, the day until which we can
observe temperature data, to the expiration date t2.

2. Compute simulated HDD between t1 and t2 for each of the paths and obtain an HDD
distribution.
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3. Either fix an arbitrary HDDstrike or choose a quantile to select the moneyness of the
structure.

4. Deduce the payment distribution.
5. Compute payment distribution characteristics: mean, VaR and CVaR.

Figure 1.10 shows the results of this method for Paris temperature in 2019. Contracts last
one month and are computed 30 days in ahead i.e. t1 − t0 = 30. We consider the payoff
function (3.1) with L = +∞ and HDDstrike set to the 90% empirical quantile of the HDD
distribution obtained with Model (M). We perform 50, 000 Monte Carlo simulations for the
Ornstein–Uhlenbeck model and for Model (M). All these choices are challenged in the following
sections.

Mean with 95% confidence interval Conditional Value at Risk at 95%
Figure 1.10: Different metrics of the payment distribution for 50, 000 Monte Carlo simulations,

Paris, a cumulation period of a month, a forecast 30 days ahead and HDDstrike

corresponding to a 90% quantile of the monthly HDD. Monte Carlo simulations
are performed for both Model (M) and the Ornstein–Uhlenbeck model (1.1).

From Figure 1.10 we can see that both Model (M) and the Ornstein–Uhlenbeck model lead
to similar expected payoffs for winter months while Model (M) states higher expected payoffs
for summer months. Model (M) tends to have heavier left tails which are particularly visible in
summer months. This explains slightly higher mean payoffs for Model (M) during these months.
Nevertheless, it should be noted that these derivatives are mainly sold for winter months to
cover against cold waves. During these months both models give similar mean payoffs.

In terms of risk metrics, we compute Conditional Value at Risks at 95% for both models. We
can see that Model (M) presents again heavier tails. Thus, as already noticed from Figures 1.4
and 1.5, Model (M) is more conservative and reduces the problem of underestimating rare
events related to the Ornstein–Uhlenbeck Gaussian framework.
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3.3 Fast Fourier Transform Approach

This section explores an alternative methodology for HDD pricing thanks to the Fast Fourier
Transform (FFT) approach developed by Carr and Madan [48]. This method has been widely
used in the literature for pricing, we just mention here the recent work of Benth et al. [17] for
an application close to ours.

3.3.1 The characteristic function

In order to apply FFT pricing, we first calculate the characteristic function of (T̃t, ζt,
∫ t

0
T̃sds).

A semi explicit formula is available because of the affine structure of Model (M).

Proposition 3.1. Let 0 ≤ t ≤ t′. Let (T̃ , ζ) be the solution of (M) with ρ = 0. The character-
istic function of (T̃t′ , ζt′) given Ft is, for u1, u2, u3 ∈ R,

E

[
exp

(
i[u1T̃t′ + u2ζt′ + u3

∫ t′

t

T̃sds]

)
|Ft

]
= exp(a0(t, t

′) + a1(t
′ − t)T̃t + a2(t

′ − t)ζt), (3.3)

where a2 is the unique solution on R+ of the time inhomogeneous autonomous Riccati equation

a′2 = −Ka2 −
1

2

[
u1 exp(−κt) + u3

1− exp(−κt)
κ

]2
+

1

2
η2a22, a2(0) = iu2, (3.4)

a1(t) = iu1 exp(−κt)+ iu3 1−exp(−κt)
κ

and a0(t, t′) = K
∫ t′

t
σ2(s)a2(t

′−s)ds. Besides, the real part
of a2(t) remains nonpositive for all t ≥ 0.

Proof. Let us first check that Equation (3.4) admits a unique solution, which is well defined for
all t ≥ 0. When u1 = u2 = u3 = 0, a2(t) = 0 is the unique solution and we get then a1(t) = 0,
a0(t, t

′) so that (3.3) holds. We now exclude this case, and observe thatR(a′2) = −KR(a2)− 1
2

[
u1 exp(−κt) + u3

1−exp(−κt)
κ

]2
+ 1

2
η2(R(a2)

2 − I(a2)
2), R(a2(0)) = 0,

I(a′2) = −KI(a2) + η2R(a2)I(a2), I(a2(0)) = u2,

with R(z) and I(z) denoting the real and imaginary parts of a complex number z. Let t̄ =
inf{t ≥ 0 : R(a2(t)) > 0}. Since R(a2(0)) = 0, we have R(a′2(0)) = −1

2
(u21 + η2u22) < 0 when

u1 ̸= 0 or u2 ̸= 0 and thus we have t̄ > 0. If u1 = u2 = 0 and u3 ̸= 0, we have I(a2(t)) = 0,
R(a′2(0)) = 0, R(a′′2(0)) = 0 and R(a′′′2 (0)) = −u23 < 0 and thus again t̄ > 0. Then, we have
I(a2(t)) = u2 exp

(
−Kt+ η2

∫ t

0
R(a2(s))ds

)
and thus |I(a2(t))| ≤ |u2| for t ∈ [0, t̄). We now

observe that t̄ cannot be finite. If it were finite, we would have R(a2(t̄)) = 0 by continuity and
then

R(a′2(t̄)) = −1

2

[
u1 exp(−κt̄) + u3

1− exp(−κt̄)
κ

]2
− 1

2
η2I(a2(t̄))

2 ≤ 0.
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If R(a′2(t̄)) < 0, we get R(a2(t)) > 0 in a left neighbourhood of t̄ which is impossible. If
R(a′2(t̄)) = 0, we then have u1 exp(−κt̄) + u3

1−exp(−κt̄)
κ

= 0 and I(a2(t̄)) = 0. The latter
gives u2 = 0. We check then that R(a′′2(t̄)) = 0 and R(a′′′2 (t̄)) = −(u3 − κu1)

2e−2κt̄ < 0 since
u1 exp(−κt̄) + u3

1−exp(−κt̄)
κ

= 0 and (u1, u3) ̸= (0, 0). Again, this gives that R(a2(t)) > 0 in a
left neighbourhood of t̄ which is impossible. Thus, t̄ = +∞ and the ODE is then clearly well
defined for all t ≥ 0.

We now check that we indeed have (3.3). Let Et = exp(a0(t, t
′)+a1(t

′− t)T̃ (t)+a2(t′− t)ζt+
iu3
∫ t

0
T̃sds). By Itô’s formula, we get for t ∈ [0, t′],

dEt =Et

[
∂ta0(t, t

′)− a′1(t
′ − t)T̃t − a′2(t

′ − t)ζt − κa1(t
′ − t)T̃t + a2(t

′ − t)K(σ2(t)− ζt)

+
1

2
a21(t

′ − t)ζt +
1

2
η2a22(t

′ − t)ζt + iu3T̃t

]
dt+ Et

√
ζt[a1(t

′ − t)dZt + ηa2(t
′ − t)dWt].

The first term vanishes, and we get

Et′ = Et +
∫ t′

t

Es
√
ζs[a1(t

′ − s)dZs + ηa2(t
′ − s)dWs]

We note that 0 ≤ |Et| ≤ exp(a0(t, t
′)) for t ∈ [0, t′] since a1 ∈ iR and R(a2) ≤ 0 and that

E[ζt] = ζ0e
−Kt +

∫ t

0
σ2(s)e−K(t−s)ds is integrable with respect to t. Thus, the integrand of the

stochastic integral is square integrable, and we get

Et = E[Et′ |Ft] = E

[
exp

(
i[u1T̃t′ + u2ζt′ + u3

∫ t′

0

T̃sds]

)∣∣∣∣∣Ft

]
,

which gives the claim.

Remark 3.1. Formula (3.3) can be extended easily to u2 ∈ R+ iR+. We then have R(a2(0)) =
−I(u2) ≤ 0, and the proof of Proposition 3.1 can be repeated step by step.

3.3.2 Approximation of the characteristic function

We now discuss the approximation of the characteristic function (3.3). To do so, we consider a
time step δ > 0, and we will assume that t = tk = kδ and t′ = tl = lδ. Note that the function a1
is fully explicit and does not need to be approximated. We use the trapezoidal rule to integrate
the function a0:

a0(tk, tl) ≈ K

l−1∑
j=k

1

2
[σ2(tj)a2(tl − tj) + σ2(tj+1)a2(tl − tj+1)]δ, k < l.
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The main issue may come from the discretization of the Riccati equation which may lead to
instabilities if it is not well handled. Here, we take advantage of the fact that an explicit
solution of (3.4) is known for κ = 0 and u3 = 0, see e.g. [6, p. 101],

a2(t) = Ψ +
2
√
D(Ψ− iu2)(

η2(Ψ− iu2)− 2
√
D
)
exp(−

√
Dt)− η2(Ψ− iu2)

,

with

D = K2 + η2u21, Ψ =
K +

√
D

η2
.

Thus, to solve (3.4), we freeze on each interval [tk, tk+1] the value of the time inhomogenous
term to its value at t = tk+tk+1

2
, and use the explicit formula. This is the midpoint method that

leads formally to a convergence of order O(δ2). This leads to:

a2(tk+1) = Ψk +
2
√
Dk(Ψk − a2(tk))(

η2(Ψk − a2(tk))− 2
√
Dk

)
exp(−

√
Dkδ)− η2(Ψk − a2(tk))

(3.5)

where

Dk = K2 + η2

(
u1 exp

(
−κtk + tk+1

2

)
+ u3

1− exp
(
−κ tk+tk+1

2

)
κ

)2

, Ψk =
K +

√
Dk

η2
.

We implement the three functions in (3.5) which enable us to deduce the characteristic func-
tion of (u1T̃ (t) + u2ζt)t≥0 where (u1, u2) ∈ C2. Figure 1.11 shows the characteristic function of
(Tt)t≥0 calculated with the approximation (3.5). It is compared with the Monte-Carlo estimator
obtained with simulated path using (4.1) (we have used here independent simulations for each
values of t′). We can see that both methods give close results, which validates the relevance of
the approximation.

3.3.3 Fast Fourier Transform for pricing HDD and related options

Once we have the characteristic function of (Tt)t≥0, we can price HDD by using Fourier inverse
transform techniques. Here, we adapt the approach of Carr and Madan [48] that uses the Fast
Fourier Transform in order to calculate the cumulative distribution function of Tt. This allows
us to calculate then easily the average value different types of bespoke options.

We first focus on the calculation of E[(Tb − Tt)
+] (resp. E[min((Tb − Tt)

+, L)]), that can be
seen as the average price of a “daily HDD" (resp. capped daily HDD). We will use this naming
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Figure 1.11: Characteristic function E
[
exp

(
iu1T̃t′

)]
(left) and E

[
exp

(
iu3
∫ t′

t
T̃sds

)
|Ft

]
(right) for Paris temperature during January 2019 for an observation time 30 days
ahead and δ = 0.1 day.

later on. The characteristic function Φ(u) = E[eiuT̃t ] is given by Proposition 3.1. We have

E[(Tb − Tt)
+] =

∫ ∞

0

P(Tb − Tt ≥ x)dx =

∫ Tb−s(t)

−∞
P(T̃t ≤ x)dx (3.6)

E[min((Tb − Tt)
+, L)]=

∫ L

0

P(Tb − Tt ≥ x)dx =

∫ Tb−s(t)

Tb−s(t)−L

P(T̃t ≤ x)dx

We approximate this cumulative density function by using the Gil-Pelaez inversion formula [6,
Theorem 4.2.3 p. 104]:

P(T̃t ≤ x) =
1

2
− 1

π
lim

m→0+,M→+∞

∫ M

m

R

(
e−ivxΦ(v)

iv

)
dv, Φ(v) = E[eivT̃t ].

Let δx, δv > 0 be such that δxδv = 2π
N

(one can take for example δx = δv =
√

2π
N

or δx = L
N−1

for the capped option so that x0 defined below is equal to Tb − s(t)− L). We define:

vj+1/2 = (j + 1/2)δv, xk = Tb − s(t) + (k −N + 1)δx, j ∈ {0, ...,N − 1}, k ∈ {0, . . . , N − 1},

so that xN−1 = Tb − s(t), and use the following approximation:

P(T̃ ≤ xk) ≈
1

2
− δv
π
R

(
N−1∑
j=0

e−ivj+1/2xkΦ(vj+1/2)

ivj+1/2

)

=
1

2
− δv
π
R

(
e−

1
2
iδvkδx

N−1∑
j=0

e−2iπ jk
N
e−i(j+1/2)δvx0Φ(vj+1/2)

ivj+1/2

)
, (3.7)
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since vj+1/2xk = 2π jk
N

+ (j + 1/2)δvx0 +
1
2
δvkδx. This amounts to use the midpoint rule and

to truncate the integral at M = Nδv. Other choices of quadrature are possible but have to be
taken in compliance with the FFT. Using (3.7), we can obtain (P(T̃ ≤ xk), 0 ≤ k ≤ N − 1)

by applying the FFT to
(

e−i(j+1/2)δvx0Φ(vj+1/2)

ivj+1/2
, 0 ≤ j ≤ N − 1

)
: these N values are obtain with

a time complexity of O(N log(N)) (instead of O(N2) with the naive calculation of the sums).
We finally approximate the expectation of the daily HDD by:

E[(Tb − Tt)
+] ≈ δx

(
N−2∑
k=0

P(T̃t ≤ xk) +
1

2
P(T̃t ≤ xN−1)

)
.

Figure 1.12 shows the characteristic function and the expected HDD in Paris during January
2019 comparing Monte Carlo simulation and FFT approach. Both graphs display a clear
coherence between Monte Carlo simulations and the FFT approach. In this case Monte Carlo
simulations show precision given that we simulate 50, 000 scenarios. However, FFT pricing is
more precise, smooth and faster. We perform FFT with N = 217.

Figure 1.12: Cumulative distribution function of 31st January 2019’s daily temperature (left)
and expected daily HDD during January 2019 days computed 30 days ahead of
the month (right) by the FFT method (red) and Monte-Carlo (blue). The black
vertical line corresponds to Tb.

We now focus on the pricing on options on HDD. We observe from the distribution in Fig-
ure 1.12 that we almost always have Tt ≤ Tb in January, otherwise we would notice a Dirac
mass at 0. In fact, with the standard strike Tb = 15.5°C, we mostly have Tt ≤ Tb during winter,
and therefore HDD ≈ (t2 − t1 +1)Tb −CAT , so that the average value of the option (3.1) can
be approximated by

E[min((HDD −HDDstrike)
+, L)] ≈ E[min(((t2 − t1 + 1)Tb −HDDstrike − CAT )+, L)]. (3.8)
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The problem of computing the right hand side is then similar to the pricing of daily HDD (3.6):
the underlying is now CAT instead of Tt. We can thus calculate the average payoff, provided
that we know the characteristic function of the CAT Φ(u) = eiu

∑t2
t=t1

s(t)E[eiu
∑t2

t=t1
T̃t ]. To do

so, it is possible to use formula (3.3) inductively with u3 = 0 (using Remark 3.1) in order to
calculate E[eiu

∑t2
t=t1

T̃t|Ft2−ℓ] for ℓ = 1, . . . , t2 − t1 and then Φ. This is however cumbersome,
and we prefer to make the following approximation

Φ(u) ≈ eiu
∑t2

t=t1
s(t)E[eiu

∫ t2+1
t1

T̃tdt].

We apply Proposition 3.1 with u1 = u2 = 0 and u3 = u, and get E[eiu
∫ t2+1
t1

T̃tdt|Ft1 ] =

exp(a0(t1, t2 + 1) + iu1−e−κ(t2+1−t1)

κ
T̃t1 + a2(t2 + 1− t1)ζt1). Hence, for t0 ≤ t1 ≤ t2,

E[eiu
∫ t2+1
t1

T̃tdt|Ft0 ] = E[E[eiu
∫ t2+1
t1

T̃tdt|Ft1 ]|Ft0 ]

= E[exp(a0(t1, t2 + 1) + iu
1− e−κ(t2+1−t1)

κ
T̃t1 + a2(t2 + 1− t1)ζt1)|Ft0 ]

= exp(a0(t1, t2 + 1)) exp(ǎ0(t0, t1) + ǎ1(t1 − t0)T̃t0 + ǎ2(t1 − t0)ζt0)

To obtain ǎ0, ǎ1, ǎ2 and the above characteristic function, we apply a second time Proposi-
tion 3.1 with u1 = u1−e−κ(t2+1−t1)

κ
, u2 = −ia2(t2+1− t1) and u3 = 0. Figure 1.13 compares CAT

distribution obtained with Monte Carlo and FFT inverse methods for the month of January
2019. We can observe a good fit between both methods.

This section has focused on the capacity of Fast Fourier Transform method to compute
explicit formulas for options on T and CAT . This methodology enables to get rid of the
computation burden of Monte Carlo simulations. However, not all the indices or payoff functions
can be explicited with FFT. In particular, derivatives that integrate double non-linearities, like
put or call payoff functions applied to HDD, cannot be explicitly computed with the FFT
method. The next section will focus on how to use FFT results to increase the performance of
Monte Carlo simulation for such cases.

3.3.4 Control variates method for Monte-Carlo

In practice the approximation (3.8) is precise when P(Tt > Tb) is close to zero. However, when
this probability is small but not negligible, the approximation may not be enough precise.
However, we can use the calculation above to run a Monte-Carlo method with the control
variable min((HDD − HDDstrike)

+, L) − λmin(((t2 − t1 + 1)Tb − HDDstrike − CAT )+, L) in
order to calculate the average payoff E[(HDD−HDDstrike)

+]. Namely, we write (we take here
L = +∞ for simpler notation)

E[(HDD −HDDstrike)
+] =λE[((t2 − t1 + 1)Tb −HDDstrike − CAT )+] (3.9)

+ E
[
(HDD −HDDstrike)

+ − λ((t2 − t1 + 1)Tb −HDDstrike − CAT )+
]
,
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Figure 1.13: Cumulative distribution function of CAT for January 2019 and 30 days observation
in advance computed by the FFT method (red) and Monte-Carlo with 50, 000
simulations (blue).

and we chose λ that minimizes V ar [(HDD −HDDstrike)
+ − λ((t2 − t1 + 1)Tb −HDDstrike − CAT )+],

i.e.

λ∗ =
Cov((HDD −HDDstrike)

+, ((t2 − t1 + 1)Tb −HDDstrike − CAT )+)

V ar(((t2 − t1 + 1)Tb −HDDstrike − CAT )+)
.

The first term of the right hand side of (3.9) is calculated by using the FFT while the second
one is calculated by Monte-Carlo.

Month 1 2 3 4 5 6 7 8 9 10 11 12
Corr 1.00 1.00 1.00 1.00 0.94 0.66 0.38 0.33 0.66 0.97 1.00 1.00
VR 2.41e5 5.24e4 4.73e3 2.22e2 5.08 1.19 1.01 1.01 1.20 9.84 3.92e2 1.40e4

Table 1.11: Correlation and variance reduction (VR) brought by the control variates method
for options computed during each month of 2019. Variance ratio corresponds to the
variance of (

∑t2
t=t1

(Tb − Tt)
+ −HDDstrike)

+ divided by the variance of the control
variable.

Figure 1.14 and Table 1.11 show the results of the implementation of the control variates
method. First, from Table 1.11 we can see that the control variates method enables to decrease
the variance up to 2.41× 105 times, leading to a price computation 105 time faster. Second, we
can observe that the performance of the method depends on the correlation between (

∑t2
t=t1

(Tb−
Tt)

+ −HDDstrike)
+ and the control variable: the more correlated they are, the more variance
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Figure 1.14: Expected payoffs forecasted 30 days ahead for the HDD derivative (3.1) (with L =
+∞) on each month of 2019 (blue) and for the control variable (red). We performed
50, 000 Monte Carlo simulations, dotted lines indicate the 95% confidence interval.

reduction we obtain (and the more approximation (3.8) is valid). Hence for the winter months
the computation is more effective, which coincides with the months for which such options
are sold. In Figure 1.14, we see that the confidence interval for winter months is considerably
narrower.

To sum up, this section has focused on exploring alternative pricing methodologies. The
Fast Fourier Transform pricing method enables to bypass Monte Carlo simulations and to
get analytical expressions for the expected payoffs of some derivatives. This enables direct
expectation computations for some derivatives like CAT . For derivatives integrating non linear
indices and payoffs, this method can be combined with the control variates method to decrease
the computational cost of the Monte Carlo simulations. In our case, this method enables to
considerably decrease the number of required simulations.

3.4 Sensitivity study

This section studies the sensitivity of the pricing to the different parameters that were either
imposed or estimated in the previous sections.

Sensitivity to κ We first analyse the sensitivity to the mean reverting parameter of the
temperature dynamics. Figure 1.15 shows that increasing κ has an important effect on the
average payoff and the simulated HDD distribution and therefore on the pricing. Indeed when
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κ increases the volatility loses its importance, the HDD distribution becomes more certain and
therefore peaks around an expected average value. Similarly, the quantiles are less spread and
therefore the strikes based on initially estimated κ are less frequent and mean payoffs shrink.

Figure 1.15: Average payoffs for values of κ ∈ {κ̂, 2κ̂, 5κ̂, 10κ̂} (left) and HDD distribution for
a derivative on the month of January 2019, forecasted 30 days ahead and based
on 50, 000 Monte Carlo simulations (right). HDDstrike is kept at 90% empirical
quantile of κ = κ̂ for all simulations.

Sensitivity to η2 Figure 1.16 shows different average payoffs and confidence intervals for
50, 000 simulations and different values of the volatility of the volatility η2. We can see that
increasing η2 creates more peaked distributions for HDD and heavier tails. This also leads to
usually higher prices. Nevertheless, it should be noted that the impact of η2 is marginal in
winter months when this product is meant to be sold. In summer months, HDDs only capture
extreme temperature left tails and this is when we can see a real impact of the volatility of
Model (M). Besides, let recall that the estimation of η2 is sensitive to the choice of Q. Wrongly
estimating this parameter would therefore mainly impact the pricing of derivatives on summer
months where the demand of such derivatives is much lower.

Sensitivity to K Figure 1.17 shows different average payoffs and confidence intervals for
50, 000 simulations. We can see that increasing K creates less peaked distributions for HDD
and lighter tails. This leads to usually lower mean payoffs when K increases. Likewise, the
impact is marginal in winter months when this product is meant to be sold. This phenomenon
is intuitive as we increase the mean reverting term of the volatility, the volatility of the volatility
losses weight in the dynamics and the extreme HDDs decrease.
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Figure 1.16: Average payoffs for different values of η2 ∈ {η̂2, 5η̂2, 10η̂2} (left) and HDD distri-
bution for a derivative on the month of January 2019, forecasted 30 days ahead
and based on 50, 000 Monte Carlo simulations (right). HDDstrike is kept at 90%
empirical quantile of η2 = η̂2 for all simulations.

Figure 1.17: Average payoffs for different values of K ∈ {K̂, 10K̂, 20K̂} (left), HDD distribu-
tion distribution starting from HDDstrike (right) for a derivative on the month of
January 2019, forecasted 30 days ahead and based on 50, 000 Monte Carlo sim-
ulations (right). HDDstrike is kept at 90% empirical quantile of K = K̂ for all
simulations.

Sensitivity to t1−t0 Now we suppose we compute the price of the derivative different possible
times ahead. Figure 1.18 shows temperature paths for different observation times t0 but the
same observed temperature and volatility at t0. The derivative applies between the black

60



A stochastic volatility model for temperature derivative pricing

vertical lines. We can observe that all the paths end up following the seasonality s.

Figure 1.18: Average temperature paths for different values of t1 − t0 (left), average payoffs
for different values of t1 − t0 for a derivative on each month of 2019 (center) and
HDD distribution for a derivative on the month of January 2019, forecasted 5, 15
and 30 days ahead and based on 50, 000 Monte Carlo simulations (right). Here,
Tt0 = s(t0) + 2σ(t0) and ζt0 = σ(t0) for t0 = 30. HDDstrike is fixed at the 90%
quantile of the 30 days ahead simulation. In the left plot, the two black vertical
lines represent times t1 and t2.

From simulated densities in Figure 1.18 we can first observe shifts depending on t1− t0. This
significantly impacts the quantiles of these densites and therefore the HDDstrike. Second, we
can note that the more ahead we forecast the less information we have. In this case, we can
observe that while pricing 20 and 30 days ahead lead to similar average payouts during the risk
period, forecasting 5 days ahead significantly impacts the average payoffs and therefore pricing.
This element is key to answer the risk of antiselection.

Sensitivity to the moneyness of the product The moneyness of the product has a direct
impact on the payoffs distribution as can be observed in Figure 1.19. The lowest the HDDstrike,
the more HDD we capture in the payoff and the higher the mean payoffs becomes.

To sum up, this section has focused on the sensitivity of the pricing to the different param-
eters. We particularly show that the parameters related to the temperature dynamics like κ
as well as the moneyness of the payoff function are the ones affecting the most the mean pay-
offs. Parallely, the distribution of the payoffs and the strike based on quantiles show important
sensitivity to the time interval t1 − t0. Finally, the parameters related to the volatily have a
relatively lower impact on the payoffs distribution and hence on the pricing.

3.5 Comparison of our pricing methodology with business practices

This section aims to make the bridge between the pricing methodology exposed in this document
and the current market practices. In particular, we will compare a pricing based on modeling
of the underlying meteorological parameter with a pricing based on historical index modeling.
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Figure 1.19: Average payoffs for different quantiles defining HDDstrike in {0.7, 0.8, 0.9} for each
month of 2019 and based on the 50, 000 Monte Carlo simulation 30 days ahead.

As described in Schiller et al. [130] and Jewson and Brix [90], the index based pricing
methodology consists in modeling the independent yearly indices, in this case cumulative HDD.

For computation ease, the index pricing is automatised following the below algorithm:

1. Compute historical index, cumulative HDD, from 1980 to 2018.

2. Remove the linear trend in this time series.

3. Fit a gamma distribution to these observations through a maximum likelihood method.

4. Compute the expected payoff of the fitted index distribution.

While this approach can be simplistic, as we can consider other probability distributions for
the index, it syntheses the common market practices.

Figure 1.20 represents the expected payoffs computed with the two methodologies. HDDstrike

corresponds to the 90% simulated quantile with the Monte Carlo method and to the 90%
historical quantile for the index modeling method. First, we can observe there is a coherence
between the approaches that give expected payoffs in the same ranges. However, the index
modeling approach introduces important instabilities. These instabilities affect both the average
payoffs as well as the strike HDDstrike, which is estimated from less than 40 observations.

We also studied the possibility of using the same strikes with both methods. First, using
the 90% quantile of 50, 000 Monte Carlo simulations leads to slightly more volatile average
payoffs for the index model method. However, we feel it is counter-intuitive to use a yearly
index modeling for pricing and a more cumbersome daily index modeling just to get the strikes.
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Figure 1.20: Expected payoffs forecasted 30 days ahead for a derivative on each month of 2019.
HDDstrike is defined differently with two methodologies. For the Monte Carlo
approach it corresponds to the 90% quantile of 50, 000 simulations while for the
Index model approach the HDDstrike corresponds to the historical quantile.

Second, we can use historical quantiles for both methodologies as on the left of Figure 1.21. In
this case we can see that the winter months seem to be completely overpriced by the business
practice while the summer months are underpriced. On the right of Figure 1.21, we compare
simulated and historical quantiles. We can see that the more difference we have between these
quantiles the higher the risk of over or underpricing.

To sum up, there exist a clear coherence between the pricing methodology followed in this
document and the current market practices as both give prices in the same ranges. However,
our approach enables to better quantify the sources of risk, which is crucial in this growing
market.
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Figure 1.21: On the right, expected payoffs forecasted 30 days ahead for a derivative on each
month of 2019 and HDDstrike defined as the 90% historical quantile for both
approaches. On the left, a comparison of simulated and historical 90% quantile.
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4 Appendices

4.1 Weather station data description

Table 1.12 summarizes the weather station data used in the above study.

City WMO Latitude Longitude Elevation Original Source

Stockholm 2485 59.34 18.05 43 m
Swedish Meteorological &
Hydrological Institute,
SMHI

Paris Charles
de Gaulle 7157 49.02 2.53 109 m ASOS-METAR

Amsterdam
AP Schiphol 6240 52.3 4.78 -4 m

Royal Netherlands
Meteorological Institute,
KNMI

Berlin Tempelhof 10384 52.47 13.4 50 m Deutsche Wetterdienst,
DWD

Brussels National 6451 50.9 4.53 58 m Royal Meteorological
Institute of Belgium

London
Heathrow 3772 51.48 -0.45 25 m ASOS-METAR

Rome Ciampino 16239 41.78 12.58 105 m ASOS-METAR
Madrid Barajas 8221 40.5 -3.58 633 m ASOS-METAR

Table 1.12: Characteristics of the weather stations providing temperature data. Speedwell ex-
plicitly states the meteorological agency the data is extracted from except for ASOS-
METAR data. ASOS-METAR is in charge of the monitoring of airport weather
stations following the standards of the International Civil Aviation Organization
(ICAO) and the World Meteorological Organization (WMO).

4.2 Model (M) simulation and estimator testing

This section explains the algorithm to simulate Model (M). Simulation is first performed to
test robustness of the estimation through the following steps:

1. Estimate κ and the seasonality s from temperature data.

2. Estimate the parameters K and σ2 and then η2.

3. Fix these parameters at the estimated values.

4. Generate a simulated instantaneous volatility series ζ based on a generalized Ninomiya-
Victoir scheme for Cox-Ingersoll-Ross (CIR) processes, and the corresponding tempera-
ture series T .
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5. Estimate (α0, β0, α1, β1, κ) on the simulated data and compare with the fixed values.

6. Compute realized volatility ζ̂ for different time lags Q.

7. Estimate (γ0, γ1, δ1, γ2, δ2, K) then η̂2, and compare with the fixed values.

The generation of the combined discrete series (Ti∆, ζi∆)i∈N is performed thanks to the recur-
rence formula:T(i+1)∆ = s((i+ 1)∆) + e−κ∆(Ti∆ − s(i∆)) +

√
1− e−2κ∆

2κ

ζi∆ + ζ(i+1)∆

2
Zi

ζ(i+1)∆ = ϕ(ζi∆,∆,
√
∆Yi),

(4.1)

where (Yi, Zi)i≥0 is an i.i.d. sequence of two independent standard normal variables. Remember
that we assume here and in the sequel of the study that ρ = 0. The first row of (4.1) corresponds
to a discretization of the integral following the temperature dynamics in Model (M) for a step
∆. The use of the trapezoidal rule comes from the operator splitting method and allow to get
a second order scheme as in [6, Eq. (4.31)]. The second row of (4.1) is the Ninomiya-Victoir
scheme for CIR processes [119] when freezing the time-dependent coefficients at time (i+1/2)∆,
which preserves the convergence of order 2 of this scheme, see [6, Paragraph 3.3.4]. In general
(i.e. when Kσ2((i+ 1/2)∆) ≥ η2

4
), ϕ corresponds to:

ϕ(ζi∆,∆,
√
∆Yi) = e−

K∆
2

(√(
Kσ2((i+ 1/2)∆)− η2

4

)
ψK

(
∆

2

)
+ ζi∆e

−K∆
2 +

η

2

√
∆Yi

)2

+

(
Kσ2((i+ 1/2)∆)− η2

4

)
ψK

(
∆

2

)
where ψK(t) =

1−e−Kt

K
. The case where Kσ2((i + 1/2)∆) < η2

4
is handled as in Alfonsi [7], so

that (4.1) is a second order scheme for the weak error, and thus an accurate approximation of
the exact law.

Remark 4.1. With this simulation method, it is possible to introduce additional granularity into
our simulated processed having more than one point per day, that is ∆ < 1. We have analysed
numerically if this extra-granularity has an incidence on the parameter estimation. Namely, we
have calculated the estimators on simulated paths with different values of ∆ but with the same
number of points. We have noticed that ∆ has a small influence on the estimators, and we do
not reproduce these experiments in the study.

4.3 CLS estimators of the temperature process

Let us consider the following dynamics for the temperature (Tt)t≥0:
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{
Tt = s(t) + T̃t,

dT̃t = −κT̃tdt+
√
ζt(ρdWt +

√
1− ρ2dZt)

(4.2)

where κ > 0, s(t) = α0 + β0t+α1 sin(ξt) + β1 cos(ξt), W and Z are two independent Brownian
motions and ζt is a nonnegative adapted process such that E[

∫ t

0
ζsde] < ∞ for all t > 0. The

goal of this appendix is to compute the conditional least squares estimators of (κ, α0, β0, α1, β1)
and to prove the next proposition.

Proposition 4.1. Let Xi∆ = (1, i∆, Ti∆, sin(ξi∆), cos(ξi∆))T ∈ R5 for i ∈ N with (Tt)t≥0

following the dynamics of (4.2) and ∆ > 0. We assume that
∑N−1

i=0 Xi∆X
T
i∆ is invertible and

define

λ̂= (λ̂0, . . . λ̂4)
T =

(
N−1∑
i=0

Xi∆X
T
i∆

)−1(N−1∑
i=0

Xi∆T(i+1)∆

)
. (4.3)

If λ̂2 ∈ (0, 1) ∪ (1,+∞), the solution of the minimisation problem

min
(κ, α0, α1, β0, β1) ∈ R5

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆]

)2 (4.4)

is given by 

κ̂ = − 1
∆
ln λ̂2

α̂0 = λ̂0

1−λ̂2
− λ̂1∆

(1−λ̂2)2

β̂0 = λ̂1

1−λ̂2

α̂1 = λ̂3(cos(ξ∆)−e−κ̂∆)+λ̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂∆)2+sin2(ξ∆)

β̂1 = λ̂4(cos(ξ∆)−e−κ̂∆)−λ̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂∆)2+sin2(ξ∆)
.

Proof. Recall that Tt = s(t) + T̃t. Applying Ito’s formula for (eκtT̃t)t≥0, we have

T̃t+∆ = T̃te
−κ∆ + ρ

∫ t+∆

t

e−κ(t+∆−s)
√
ζsdWs +

√
1− ρ2

∫ t+∆

t

e−κ(t+∆−s)
√
ζsdZs (4.5)

From the martingale property of the stochastic integral (we have
∫ t+∆

t
E[ζs]ds < ∞ since

E[ζs] = ζ0e
−Ks +

∫ s

0
e−K(su)σ2(u)du), we have E[T̃t+∆|Ft] = T̃te

−κ∆ and thus

E[Tt+∆|Ft] = Tte
−κ∆ + s(t+∆)− s(t)e−κ∆.

We now use trigonometric identities to get
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s(t+∆)− e−κ∆s(t) =α0 + β0(t+∆)− α0e
−κ∆ − β0e

−κ∆t+ α1 sin(ξ(t+∆))− α1e
−κ∆ sin(ξt)

+ β1 cos(ξ(t+∆))− β1e
−κ∆ cos(ξt)

= λ0 + λ1t+ λ3 sin(ξt) + λ4 cos(ξt),

with 

λ0 = α0(1− e−κ∆) + β0∆

λ1 = β0(1− e−κ∆)

λ2 = e−κ∆

λ3 = α1(cos(ξ∆)− e−κ∆)− β1 sin(ξ∆)

λ4 = α1 sin(ξ∆) + β1(cos(ξ∆)− e−κ∆),

(4.6)

where λ2 is set to have E[T(i+1)∆|Ft] = λTXi∆. The minimization problem (4.4) is then equiv-
alent to

min
λ ∈ R5

N−1∑
i=0

(
T(i+1)∆ − λTXi∆

)2
.

This corresponds to a linear regression, whose solution is given by (4.3). When λ2 ∈ (0, 1), the
system (4.6) can be inverted, and the claim follows easily.

Let us note here that λ̂TXi∆ can then be seen as the estimation of E[T(i+1)∆|Ti∆].

4.4 CLS estimators of the volatility process

Let consider the volatility of the temperature (ζt)t≥0 follows the below dynamics:

dζt = −K(ζt − σ2(t))dt+ η
√
ζtdWt (4.7)

where K > 0, σ2 is a nonnegative function with the parametric form given by (1.5) and W
is a Brownian motion. The goal of this appendix is to compute the conditional least squares
estimators of the parameters (γ0, K, γ1, . . . , γKσ2 , δ1, . . . , δKσ2 ).

Proposition 4.2. Let X ′
i∆ = (1, ζi∆, sin(ξ1i∆), . . . , sin(ξKσ2 i∆), cos(ξ1i∆), . . . , cos(ξKσ2 i∆))T

with (ζt)t≥0 following the dynamics (4.7) and ∆ > 0. We assume that
∑N−1

i=0 X ′
i∆X

′T
i∆ is invertible

and define

(θ̂0, ϕ̂0, θ̂1, . . . , θ̂Kσ2 , ϕ̂1, . . . , ϕ̂Kσ2 )
T =

(
N−1∑
i=0

X ′
i∆X

′T
i∆

)−1(N−1∑
i=0

X ′
i∆ζ(i+1)∆

)
.
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If ϕ̂0 ∈ (0, 1) ∪ (1,∞), the solution of the minimisation problem

min
K ∈ R, γ ∈ RKσ2+1, δ ∈ RKσ2

N−1∑
i=0

(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2 (4.8)

is given by 

γ̂0 =
θ̂0

1− ϕ̂0

K̂ = − 1

∆
ln(ϕ̂0)

γ̂k =
θ̂kDk − ϕ̂kBk

AkDk − CkBk

δ̂k =
θ̂kCk − ϕ̂kAk

CkBk − AkDk

(4.9)

where, for k ∈ {1, . . . , Kσ2},

Ak = K̂
K̂(cos(ξk∆)− e−K̂∆) + ξk sin(ξk∆)

K̂2 + ξ2k

Bk = −K̂ K̂ sin(ξk∆)− ξk(cos(ξk∆)− e−K̂∆)

K̂2 + ξ2k

Ck = K̂
K̂ sin(ξk∆)− ξk(cos(ξk∆)− e−K̂∆)

K̂2 + ξ2k

Dk = K̂
K̂(cos(ξk∆)− e−K̂∆) + ξk sin(ξk∆)

K̂2 + ξ2k
.

For the proof of Proposition 4.2 we will need Lemma 4.1, whose proof is straightforward.

Lemma 4.1. For K2 + ξ2 > 0 and k ∈ N∗, we have∫ t+∆

t

e−K(t+∆−s) cos(ξks)ds = cos(ξkt)
K[cos(ξk∆)− e−K∆] + ξk sin(ξk∆)

K2 + ξ2k

− sin(ξkt)
K sin(ξk∆)− ξk(cos(ξk∆)− e−K∆)

K2 + ξ2k
,∫ t+∆

t

e−K(t+∆−s) sin(ξks)ds = sin(ξkt)
K[cos(ξk∆)− e−K∆] + ξk sin(ξk∆)

K2 + ξ2k

+ cos(ξkt)
K sin(ξk∆)− ξk(cos(ξk∆)− e−K∆)

K2 + ξ2k
.
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Proof of Proposition 4.2. Applying Ito’s formula for (eKtζt)t≥0, we have:

ζt+∆ = ζte
−K∆ +K

∫ t+∆

t

e−K(t+∆−s)σ2(s)ds+ η

∫ t+∆

t

e−K(t+∆−s)
√
ζsdWs (4.10)

Hence, we get

E[ζt+∆|Ft] = ζte
−K∆ +K

∫ t+∆

t

e−K(t+∆−s)σ2(s)ds.

From (1.5) and Lemma 4.1, we then obtain for t ≥ 0 and ζ0 ≥ 0,

E[ζt+∆|Ft] = θ0 + ϕ0ζt +

Kσ2∑
k=1

θk sin(ξkt) +

Kσ2∑
k=1

ϕk cos(ξkt), (4.11)

with



θ0 = γ0(1− e−K∆)

ϕ0 = e−K∆

θk = γkK
K[cos(ξk∆)− e−K∆] + ξk sin(ξk∆)

K2 + ξ2k
− δkK

K sin(ξk∆)− ξk(cos(ξk∆)− e−K∆)

K2 + ξ2k

ϕk = γkK
K sin(ξk∆)− ξk(cos(ξk∆)− e−K∆)

K2 + ξ2k
+ δkK

K[cos(ξk∆)− e−K∆] + ξk sin(ξk∆)

K2 + ξ2k

We can invert the above system when ϕ0 ∈ (0, 1)∪ (1,+∞) to get the formulas of K, γ0, γk, δk.



γ0 =
θ0

1− ϕ0

K = − 1

∆
ln(ϕ0)

γk =
θkDk − ϕkBk

AkDk − CkBk

δk =
θkCk − ϕkAk

CkBk − AkDk

(4.12)

where
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Ak = K
K(cos(ξk∆)− e−K∆) + ξk sin(ξk∆)

K2 + (ξk)2

Bk = −KK sin(ξk∆)− ξk(cos(ξk∆)− e−K∆)

K2 + (ξk)2

Ck = K
K sin(ξk∆)− ξk(cos(ξk∆)− e−K∆)

K2 + (ξk)2

Dk = K
K(cos(ξk∆)− e−K∆) + ξk sin(ξk∆)

K2 + (ξk)2

Let us observe that AkDk − CkBk ≥ 0 as a sum of squares. We even have AkDk − CkBk > 0
since (K(cos(ξk∆)− e−K∆) + ξk sin(ξk∆), K sin(ξk∆)− ξk(cos(ξk∆)− e−K∆)) ̸= (0, 0) as

det

[
(cos(ξk∆)− e−K∆) sin(ξk∆)

sin(ξk∆) (cos(ξk∆)− e−K∆)

]
= 1−2 cos(ξk∆)e−K∆+e−2K∆ ≥ (1−e−K∆)2 > 0,

since K ̸= 0 by the assumption ϕ0 ̸= 1. The minimization problem (4.8) is then equivalent to

min
ϑ

N−1∑
i=0

(
ζ(i+1)∆ − ϑTX ′

i∆

)2
where ϑ = (θ0, ϕ0, θ1, . . . , θKσ2 , ϕ1, . . . , ϕKσ2 )

T and

X ′
i∆ = (1, ζi∆, sin(ξ1i∆), . . . , sin(ξKσ2 i∆), cos(ξ1i∆), . . . , cos(ξKσ2 i∆))T , 0 ≤ i ≤ N − 1. (4.13)

This problem corresponds to a simple multilinear regression problem. Its solution is given by:

ϑ̂ =

(
N−1∑
i=0

X ′T
i∆X

′
i∆

)−1(N−1∑
i=0

X ′T
i∆ζ(i+1)∆

)
Combined with Equation (4.12), we get the estimators (4.9) of the volatility parameters of of
Model (M).

Let us note here that ϑ̂TX ′
i∆ can be seen as the estimation of E[ζ(i+1)∆|ζi∆].

4.5 Computation of the CLS estimators of η2 and ρ

Let consider the volatility of the temperature (ζt)t≥0 follows the below dynamics for t ≥ 0 and
ζ0 ≥ 0:

dζt = −K(ζt − σ2(t))dt+ η
√
ζtdWt, (4.14)

as in Model (M) with σ2(t) = γ0 +
∑Kσ2

k=1 γk sin(ξkt) +
∑Kσ2

k=1 δk cos(ξkt). We first focus on the
conditional least squares estimator of the volatility of the volatility η2, and assume that the
coefficients K and σ2(·) are known.
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Proposition 4.3. Let (ζt)t≥0 follow the dynamics (4.14) with σ2(t) being a nonnegative function
of the form (1.5) and ∆ > 0. Then, we have for i ∈ N

Yi∆ = E[
(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2 |ζi∆] = θ′0 + ϕ′
0ζi∆ +

Kσ2∑
k=1

θ′k sin(ξki∆) +

Kσ2∑
k=1

ϕ′
k cos(ξki∆) > 0,

with θ′ and ϕ′ defined by (4.17). The solution of the minimisation problem

min
η2≥ 0

N−1∑
i=0

(
(ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆])2 − E[

(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2 |ζi∆])2 (4.15)

is given by

η̂2 =

∑N−1
i=0 Yi∆(ζ(i+1)∆ − ϑTX ′

i∆)
2∑N−1

i=0 Y 2
i∆

, (4.16)

where ϑ and X ′
i∆ are defined by (4.13).

For the proof of Proposition 4.3, we first state Lemma 4.2, which is a straightforward generali-
sation of (4.11).

Lemma 4.2. For all s ≥ t,

E[ζs|Ft] = ζte
−K(s−t) + γ0(1− e−K(s−t)) +

Kσ2∑
k=1

Θk(s− t) sin(ξkt) +

Kσ2∑
k=1

Φk(s− t) cos(ξkt),

with

Θk(v) = γkK
K[cos(ξkv)− e−Kv] + ξk sin(ξkv)

K2 + ξ2k
− δkK

K sin(ξkv)− ξk(cos(ξkv)− e−Kv)

K2 + ξ2k
,

Φk(v) = γkK
K sin(ξkv)− ξk(cos(ξkv)− e−Kv)

K2 + ξ2k
+ δkK

K[cos(ξkv)− e−Kv] + ξk sin(ξkv)

K2 + ξ2k
.

Proof of Proposition 4.3. Let recall Equation (4.10) and compute the conditional variance of
(ζt)t≥0:

ζt+∆ = ζte
−K∆ +K

∫ t+∆

t

e−K(t+∆−s)σ2(s)ds+ η

∫ t+∆

t

e−K(t+∆−s)
√
ζsdWs

E
[
(ζt+∆ − E[ζt+∆|ζt])2 |Ft

]
= E

[(
η

∫ t+∆

t

e−K(t+∆−s)
√
ζsdWs

)2

|Ft

]

= η2
∫ t+∆

t

e−2K(t+∆−s)E[ζs|ζt]ds
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by Ito’s isometry, and using that E[ζs|Ft] = E[ζs|ζt]. From Lemmas 4.2 and 4.1, we deduce that

∫ t+∆

t

e−2K(t+∆−u)E[ζu|ζt]du = θ′0 + ϕ′
0ζt +

Kσ2∑
k=1

θ′k sin(ξkt) +

Kσ2∑
k=1

ϕ′
k cos(ξkt),

where 

θ′0 = γ0
(1− e−K∆)2

2K

ϕ′
0 =

e−K∆

K
(1− e−K∆)

θ′k = γkK
K[A′

k − ϕ′
0] + ξkB

′
k

K2 + ξ2k
− δkK

KB′
k − ξk[A

′
k − ϕ′

0]

K2 + ξ2k

ϕ′
k = γkK

KB′
k − ξk[A

′
k − ϕ′

0]

K2 + ξ2k
+ δkK

K[A′
k − ϕ′

0] + ξkB
′
k

K2 + ξ2k
,

(4.17)

and 
A′

k =
2K[cos(ξk∆)− e−2K∆] + ξk sin(ξk∆)

4K2 + ξ2k

B′
k =

2K sin(ξk∆)− ξk(cos(ξk∆)− e−2K∆)

4K2 + ξ2k
.

For example, θ′k =
∫ t+∆

t
e−2K(t+∆−u)Θk(u − t)du =

∫ ∆

0
e−2K(∆−u)Θk(u)du, and we use then

Lemma 4.1 to get the formulas forA′
k =

∫ ∆

0
e−2K(∆−u) cos(ξku)du andB′

k =
∫ ∆

0
e−2K(∆−u) sin(ξku)du.

The calculation of ψ′
k works in the same way.

Hence, we get

E[(ζt+∆ − E[ζt+∆|ζt])2 |ζt] = η2

θ′0 + ϕ′
0ζt +

Kσ2∑
k=1

θ′k sin(ξkt) +

Kσ2∑
k=1

ϕ′
k cos(ξkt)

 ,

and hence the value of Yi∆. We also observe that Yi∆ > 0 since e−2K((i+1)∆−u) > 0 and
E[ζu|ζi∆] = ζi∆e

−K(u−i∆) +K
∫ u

i∆
e−K(u−s)σ2(s)ds ≥ K

∫ u

i∆
e−K(u−s)σ2(s)ds > 0 for u ∈ (i∆, (i+

1)∆).
Now, let come back to the considered minimisation problem (4.15). We consider ϑ and X ′

i∆

defined by (4.13) and define Yi∆ as in Proposition 4.3 = θ′0 + ϕ′
0ζi∆ +

∑
k θ

′
k sin(ξki∆) +∑

k ϕ
′
k cos(ξki∆). Thus, from Proposition 4.2, we have E[ζ(i+1)∆|ζi∆] = ϑTX ′

i∆ and E[(ζ(i+1)∆ −
E[ζ(i+1)∆|ζi∆])2|ζi∆] = η2Yi∆. Problem (4.15) is then equivalent to
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min
η2

N−1∑
i=0

(
(ζ(i+1)∆ − ϑTX ′

i∆)
2 − η2Yi∆

)2
,

whose solution is given by (4.16).

We now focus on the conditional least squares estimator of the correlation ρ for Model (M)
and assume that the coefficients κ, s(·), K, σ2(·) and η2 are known.

Proposition 4.4. Let (Tt, ζt)t≥0 follow (M) with σ2(t) being a nonnegative function of the
form (1.5) and ∆ > 0. Then, we have for i ∈ N

Y ′
i∆ = θ′′0 + ϕ′′

0ζi∆ +
∑
k

θ′′k sin(ξki∆) +
∑
k

ϕ′′
k cos(ξki∆) > 0,

with θ′′ and ϕ′′ given by (4.19). The solution of the minimisation problem

min
ρ∈R

N−1∑
i=0

(
(T(i+1)∆ − E[T(i+1)∆|Fi∆])(ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆])

− E[(T(i+1)∆ − E[T(i+1)∆|Fi∆])(ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]|Fi∆])
)2

is given by

ρ̂ =

∑N−1
i=0 Y ′

i∆(T(i+1)∆ − λTXi∆)(ζ(i+1)∆ − ϑX ′
i∆)∑N−1

i=0 (Y ′
i∆)

2
, (4.18)

where Xi∆ and λ are defined in Proposition 4.1 (resp. X ′
i∆ and ϑ in Proposition 4.2).

Let us note that we do not know a priori that ρ̂ ∈ [−1, 1].

Proof. We first calculate the covariance between the temperature (Tt)t≥0 and the volatility
(ζt)t≥0:

E[(Tt+∆ − E[Tt+∆|Tt]) (ζt+∆ − E[ζt+∆|ζt]) |Ft]

= E
[(∫ t+∆

t

e−κ(t+∆−s)
√
ζs(ρdWs +

√
1− ρ2dZs)

)(
η

∫ t+∆

t

e−K(t+∆−s)
√
ζsdWs

)
|Ft

]
= ρηE

[∫ t+∆

t

e−(κ+K)(t+∆−s)ζsds|ζt
]
= ρη

∫ t+∆

t

e−(κ+K)(t+∆−s)E[ζs|ζt]ds,

by using the Ito isometry, the independence between W and Z and E[ζs|Ft] = E[ζs|ζt].
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From Lemma 4.2, we get by standard calculations

η

∫ t+∆

t

e−(K+κ)(t+∆−s)E[ζs|Ft]ds = θ′′0 + ϕ′′
0ζt +

Kσ2∑
k=1

θ′′k sin(ξks) +

Kσ2∑
k=1

ϕ′′
k cos(ξks),

with 

θ′′0 = ηγ0

(
1− e−(κ+K)∆

κ+K
+
e−(κ+K)∆ − e−K∆

κ

)
ϕ′′
0 = ηe−K∆1− e−κ∆

κ

θ′′k = ηγkK
K(A′′

k − ϕ′′
0) + ξkB

′′
k

K2 + ξ2k
− ηδkK

KB′′
k − ξk(A

′′
k − ϕ′′

0)

K2 + ξ2k

ϕ′′
k = ηγkK

KB′′
k − ξk(A

′′
k − ϕ′′

0)

K2 + ξ2k
+ ηδkK

K(A′′
k − ϕ′′

0) + ξkB
′′
k

K2 + ξ2k
,

(4.19)

and 
A′′

k =
(K + κ)(cos(ξk∆)− e−(K+κ)∆) + ξk sin(ξk∆)

(K + κ)2 + ξ2k

B′′
k =

(K + κ) sin(ξk∆)− ξk(cos(ξk∆)− e−(K+κ)∆)

(K + κ)2 + ξ2k
.

These calculations are similar to the ones of Proposition 4.3, and we get that Y ′
i∆ > 0 ex-

actly as we have obtained Yi∆ > 0 in this proposition. Now, let come back to the consid-
ered minimisation problem and define Yi∆ as in Proposition 4.3. We also consider Xi∆ =
(1, i∆, Ti∆, sin(ξi∆), cos(ξi∆))T and λ defined by (4.6) (resp. X ′

i∆ and ϑ defined by (4.13)), so
that E[T(i+1)∆|Ti∆] = λTXi∆ (resp. E[ζ(i+1)∆|ζi∆] = ϑT ζi∆). The minimisation problem can be
rewritten as follows,

min
ρ

N−1∑
i=0

(
(T(i+1)∆ − λTXi∆)(ζ(i+1)∆ − ϑT ζi∆|Fi∆])− ρY ′

i∆

)2
,

and the minimum is clearly given by (4.18).

4.6 Strong consistency of CLS estimators for the time-dependent CIR
processes

We study in this appendix the strong consistency of CLS estimators of a time-dependent CIR
process. This process is implemented in this study to represent the temperature volatility
dynamics. Let us consider the following process

dζt = K(γθ(t)− ζt)dt+ η
√
ζtdWt, ζ0 ≥ 0, (4.20)
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with K, γ, η > 0 and θ : R+ → R+. We assume that process is observed at discrete times
(ζk∆)k∈N.

The goal of this appendix is twofold. First, we prove in Theorem 1 the consistency of the
CLS estimator of γ when other parameters are known and give the rate of convergence. This
result complements the one of Overbeck and Ryden [123] in a time inhomogeneous case. This
is a simplification with respect to the estimation of K, γ’s and δ’s in model (M) given by
Proposition 4.2: we only estimate one drift parameter instead of 2(Kσ2 + 1) drift parameters.
This avoids cumbersome calculations, but the same behaviour is expected for the CLS estima-
tors of these 2(Kσ2 + 1) parameters. Second, we prove in Theorem 2 the consistency of the
CLS estimator of η2 when other parameters are known. This result complements the results of
Bolyog and Pap [34] that only focus on the CLS estimation of the drift part.

By straightforward calculations, we have for 0 ≤ s ≤ t,

ζt = ζse
−K(t−s) +

∫ t

s

Kγθ(u)e−K(t−u)du+ η

∫ t

s

e−K(t−u)
√
ζudWu, (4.21)

E[ζt|ζs] = ζse
−K(t−s) +

∫ t

s

Kγθ(u)e−K(t−u)du.

The CLS estimator of γ consists in minimizing
∑N−1

i=0

(
ζi∆ − E[ζ(i+1)∆|ζi∆]

)2, i.e.

N−1∑
i=0

(
ζ(i+1)∆ − ζi∆e

−K∆ −Kγ

∫ (i+1)∆

i∆

θ(u)e−K((i+1)∆−u)du

)2

,

which leads to

γ̂N,∆ =

∑N−1
i=0 (ζ(i+1)∆ − ζi∆e

−K∆)
∫ (i+1)∆

i∆
θ(u)e−K((i+1)∆−u)du

K
∑N−1

i=0

(∫ (i+1)∆

i∆
θ(u)e−K((i+1)∆−u)du

)2 . (4.22)

In this appendix, we note γ̂N,∆ instead of γ̂ to remind the dependence on N and ∆. This makes
clearer the statements of Theorems 1 and 2 that involve these two quantities.

In the particular case θ ≡ 1, we have

γ̂N,∆ =
1

N(1− e−K∆)

N−1∑
i=0

(ζ(i+1)∆ − ζi∆e
−K∆) =

1

N

N−1∑
i=1

ζi∆ +
ζN∆ − ζ0e

−K∆

N(1− e−K∆)
.

The second term is negligible and, following Overbeck and Ryden [123], we get that the es-
timator γ̂N,∆ is strongly consistent (i.e. γ̂N,∆ → γ a.s.) and asymptotically normal (i.e.√
N(γ̂N,∆ − γ) converges in law to a normal random variable) by using the ergodic theorem.
When θ is not constant, we can no longer use the ergodic theorem. We will make the proof

of consistency under the assumption that θ is a bounded function. We lose the asymptotic
normality but still have a convergence rate of

√
N . We will use the following lemma.
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Lemma 4.3. Let θ : R+ → R+ be a bounded measurable function and K > 0. Then, the
process (4.20) is well defined, nonnegative, and we have

∀p > 0, sup
t≥0

E[ζpt ] <∞.

Proof. By using the well-known result of Yamada and Watanabe (see e.g. Karatzas and
Shreve [92, Proposition 2.13 p. 291]), there exists a pathwise unique strong solution to (4.20).
From the comparison result [92, Proposition 2.18 p. 293], ζt is greater than ζ̃t = ζ0−

∫ t

0
Kζ̃sds+

η
∫ t

0

√
ζ̃sdWs, since the initial values are the same and the drift of ζ̃ is below the one of ζ.

Since ζ̃ is a Cox-Ingersoll-Ross process, it is nonnegative. We thus have ζt ≥ ζ̃t ≥ 0.
Now let us turn to the moments. It is sufficient to check the result for p ∈ N∗. For p = 1, we

have

E[ζt] = ζ0e
−Kt +

∫ t

0

Kγθ(u)e−K(t−u)du ≤ ζ0 + γθ̄,

with θ̄ = supu≥0 θ(u) <∞. We then prove supt≥0 E[ζ
p
t ] <∞ by induction on p.

By Itô’s formula, we have dζpt = pζp−1
t K(θ(t) − ζt)dt + pηζ

p−1/2
t dWt + p(p − 1)η

2

2
ζp−1
t dt and

thus

E[ζpt ] = ζp0e
−Kpt +

∫ t

0

e−Kp(t−u)pK

(
θ(u) +

p− 1

2K
η2
)
E[ζp−1

t ]du,

since the stochastic integral has a zero expectation (note that the SDE (4.20) has finite moments
of any order by [92, Problem 3.15 p. 306]). This leads to E[ζpt ] ≤ ζp0+

(
θ̄ + p−1

2K
η2
)
supt≥0 E[ζ

p−1
t ],

and to the claim by induction on p.

Theorem 1. Let us assume that θ : R+ → R+ is a bounded measurable function such that
0 < θ ≤ θ(u) < θ̄ for some θ, θ̄ ∈ R∗

+. Then, for all ∆ > 0, the estimator γ̂N,∆ is strongly
consistent (i.e. converges to γ a.s. as N → ∞) and such that Nα(γ̂N,∆ − γ) → 0 as N → ∞
a.s. for any α ∈ (0, 1/2).

Proof. From (4.21), we get

ζ(i+1)∆ − ζi∆e
−K∆ = γ

∫ (i+1)∆

i∆

Kθ(u)e−K((i+1)∆−u)du+ η

∫ (i+1)∆

i∆

e−K((i+1)∆−u)
√
ζudWu.

Using this in (4.22), we obtain

γ̂N,∆ = γ + η

∑N−1
i=0

∫ (i+1)∆

i∆
e−K((i+1)∆−u)

√
ζudWu

∫ (i+1)∆

i∆
θ(u)e−K((i+1)∆−u)du

K
∑N−1

i=1

(∫ (i+1)∆

i∆
θ(u)e−K((i+1)∆−u)du

)2
= γ + η

∑N−1
i=0 Θi(Mi+1 −Mi)∑N−1

i=0 Θ2
i

,
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with Θi = K
∫ (i+1)∆

i∆
θ(u)e−K((i+1)∆−u)du, Mi+1 −Mi =

∫ (i+1)∆

i∆
e−K((i+1)∆−u)

√
ζudWu.

We have
∑N−1

i=0 Θi(Mi+1 − Mi) =
∫ N∆

0
Θi(u)e

−K(i(u)∆−u)
√
ζudWu. By Burkholder-Davis-

Gundy inequality and then Jensen inequality, we get for p ≥ 2,

E

[∣∣∣∣∣
N−1∑
i=0

Θi(Mi+1 −Mi)

∣∣∣∣∣
p]

≤ CpE

[∣∣∣∣∫ N∆

0

Θ2
i(u)e

−2K(i(u)∆−u)ζudu

∣∣∣∣p/2
]

≤ Cp(N∆)p/2−1E
[∫ N∆

0

Θp
i(u)e

−pK(i(u)∆−u)ζp/2u du

]
≤ Cp(N∆)p/2θ̄p sup

t≥0
E[ζp/2t ],

where i(u) = i for u ∈ [i∆, (i+ 1)∆]. Here, we have used Θi ≤ (1− e−K∆)θ ≤ θ.
On the other hand, we have Θi ≥ (1− e−K∆)θ, and therefore

E[|ϵN |p] ≤
(

1

N(1− e−K∆)2θ2

)p

× Cp(N∆)p/2θ̄p sup
t≥0

E[ζp/2t ],

with ϵN =
∑N−1

i=0 Θi(Mi+1−Mi)∑N−1
i=0 Θ2

i

. This gives E[|ϵN |p] = O(N−p/2) by Lemma 4.3.
Therefore, for any α ∈ (0, 1/2), we can take p > 2 such that p(1/2 − α) > 1 and thus

E[
∑∞

N=1 |NαϵN |p] <∞, which gives that NαϵN → 0, a.s.

We now turn to the Conditional Least Squares estimation of η2 for the process (4.20). We
now assume that K, γ > 0 and θ(·) are known. Without loss of generality, we assume that
γ = 1 and consider the minimization problem of

N−1∑
i=0

[(
ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆]

)2 − E
[(
ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆]

)2 |Fi∆

]]2
,

with respect to η2. By using Equation (4.21) and Fubini theorem, we get

E
[(
ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆]

)2 |Fi∆

]
= η2

∫ (i+1)∆

i∆

e−2K((i+1)∆−u)E[ζu|Fi∆]du

= η2

(∫ (i+1)∆

i∆

e−2K((i+1)∆−u)ζi∆e
−K(u−i∆)du+

∫
i∆<v<u<(i+1)∆

e−2K((i+1)∆−u)θ(v)e−K(u−v)dudv

)

= η2

(
e−K∆1− e−K∆

K
ζi∆ +

∫ (i+1)∆

i∆

θ(v)e−K((i+1)∆−v)(1− e−K((i+1)∆−v))dv

)
. (4.23)

The minimization of
N−1∑
i=0

[(
ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆]

)2 − η2

(
e−K∆ 1− e−K∆

K
ζi∆ +

∫ (i+1)∆

i∆

θ(v)e−K((i+1)∆−v)(1− e−K((i+1)∆−v))dv

)]2
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then leads to the following estimator

η̂2∆,N =

∑N−1
i=0

(
ζ(i+1)∆ − (ζi∆e

−K∆ +Θ1
i )
)2 (

e−K∆ 1−e−K∆

K
ζi∆ +Θ2

i

)
∑N−1

i=0

(
e−K∆ 1−e−K∆

K
ζi∆ +Θ2

i

)2 ,

with Θ1
i = Kγ

∫ (i+1)∆

i∆
θ(v)e−K((i+1)∆−v)dv and Θ2

i =
∫ (i+1)∆

i∆
θ(v)e−K((i+1)∆−v)(1−e−K((i+1)∆−v))dv.

Theorem 2. Let us assume γ = 1 and that θ : R+ → R+ is a bounded measurable function
such that 0 < θ ≤ θ(u) < θ̄ for some θ, θ̄ ∈ R∗

+. Then, for all ∆ > 0, the estimator η̂2N,∆ is
strongly consistent (i.e. converges to η2 a.s. as N → +∞) and such that Nα(η̂2N,∆ − η2) → 0
a.s. for any α ∈ (0, 1/2).

Proof. The proof follows the same arguments as the one of Theorem 1, and we give the main
lines. We have ζ(i+1)∆ − (ζi∆e

−K∆ +Θ1
i ) = η

∫ (i+1)∆

i∆
e−K((i+1)∆−u)

√
ζudWu by (4.21) and define

ai = e−K∆ 1−e−K∆

K
ζi∆ +Θ2

i which is nonnegative. We can rewrite

η̂2∆,N = η2 + η2

∑N−1
i=0 ai

[(∫ (i+1)∆

i∆
e−K((i+1)∆−u)

√
ζudWu

)2
− ai

]
∑N−1

i=0 a2i

We set M0 = 0 and Mi+1 −Mi =
(∫ (i+1)∆

i∆
e−K((i+1)∆−u)

√
ζudWu

)2
− ai for i ∈ N. The process

M is a Fi∆-martingale by (4.23), and since ai is Fi∆-adapted,
∑N−1

i=0 ai(Mi+1 −Mi) is also a
martingale. Applying Burkholder-Davis-Gundy inequality and then Jensen inequality, we get
for p ≥ 2

E

[∣∣∣∣∣
N−1∑
i=0

ai(Mi+1 −Mi)

∣∣∣∣∣
p]

≤ CpE

(N−1∑
i=0

a2i (Mi+1 −Mi)
2

)p/2
 ≤ CpN

p/2−1E

[
N−1∑
i=0

api |Mi+1 −Mi|p
]
.

Now, we check easily from Lemma 4.3 that E[api |Mi+1 −Mi|p] ≤ C ′
p < ∞ for all i, and thus

E
[∣∣∣∑N−1

i=0 ai(Mi+1 −Mi)
∣∣∣p] = O(Np/2).

On the other hand, we have ai ≥ Θ2
i ≥ θ (1−e−K∆)2

2K
and thus

∑N−1
i=0 a2i ≥ Nθ2

(
(1−e−K∆)2

2K

)2
.

Setting ϵN =
∑N−1

i=0 ai(Mi+1−Mi)∑N−1
i=0 a2i

, we get E[|ϵN |p] = O(N−p/2), and we conclude as in the proof of
Theorem 1.
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Chapter 2

Risk valuation of quanto derivatives for
temperature and electricity

Introduction

The increasing impact of climate change on businesses has led to a growing demand for risk
transfer instruments to hedge against its consequences. The energy sector is particularly af-
fected by such weather variability. On the one hand, weather variability affects energy pro-
duction. The availability of wind and solar radiation impacts the production of renewable
electricity [19]. Similarly, experienced and predicted temperatures influence demand, as cold
snaps increase heating demand in winter and heat waves increase cooling demand in sum-
mer [23]. This exposure to weather variability is often referred to as volumetric risk [117]. On
the other hand, weather forecasts can have a direct impact on energy prices as actors anticipate
demand increases and act in advance. This less frequently discussed risk is referred to as price
risk [37].

Weather derivatives emerged in the 1990s as a response to this need for risk transfer. These
financial instruments are based on an underlying weather index and trigger a claim depending
on the value of the index at maturity, similar to other financial market derivatives. These
instruments experienced significant success in the early 2000s, reaching $45 billion in notional
volume traded in the market in 2006 according to the World Risk Management Association [147].
Mainly dominated by temperature-based derivatives, up to 95% of the market, the weather
market remained illiquid with small volumes traded in the standardized open market and most
of the volume traded OTC [146]. It also led to extensive research into the modeling of weather
derivatives and best pricing methodologies [90] [24] [28] [3] [42] [41] [38].

By 2008, the weather market experienced a significant slowdown, with trading volumes de-
clining to $11.8 billion in 2011 [148]. This corresponded to a general slowdown of financial
markets, but also, according to Pérez-González and Yun [125], to the birth of new hybrid
derivatives that could combine both volumetric and price risk. These new products, also called
quantos, were indexed to two underlying parameters, one proxying the volumetric risk, typically
a weather parameter, and one proxying the price risk, typically the spot price of electricity, gas
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or oil. These double-indexed products already existed in the market for other financial assets
(foreign exchange, bonds, commodities) [14] [88]. They are technically challenging because they
require a convincing model of the joint distribution of the underlyings. Our analysis will focus
on finding a model to price temperature and spot electricity price quantos.

Unfortunately, the literature exploring weather quantos is thin. Benth and al. [22] use a
Heath-Jarrow-Morton approach to price hybrid derivatives combining New York Mercantile
Exchange-traded natural gas futures and Chicago Mercantile Exchange-traded heating de-
gree day futures for New York. Matsumoto and Yamada study the optimal design of mixed
weather derivatives on wind indices and electricity prices [155]. Benth and Ibrahim [19] develop
continuous-time models combining spot prices and logarithmic photovoltaic power production.
For quantos combining energy prices and temperature, we should mention Caporin and al [44],
who develop a two-dimensional daily ARFIMA-FIGARCH model for energy prices and temper-
ature. They consider both an actuarial and a financial approach and perform simulation-based
pricing that leads to important price differences [44]. Cucu and al. [56] develop a combined
natural gas spot price and temperature model. They address calibration and pricing challenges
for temperature-gas swaps. Finally, Benth and al. [17] consider bivariate Markov-modulated
additive processes with independent non-stationary increments to model quantos combining
temperature and energy and electricity and gas prices. Given a known analytical joint charac-
teristic function for the logarithmic futures prices, they derive quanto pricing formulas for the
Fast Fourier Transform (FFT) technique.

We begin our analysis by exploring various marginal models for spot energy price and daily
temperature. In particular, we dive deep into a large literature on energy and commodity
modeling [62] [150]. First, we examine mean-reverting diffusion models. Pioneering models by
Gibson and Schwartz [77], Schwartz [132], and Lucia and Schwartz [107] propose two- or three-
factors Gaussian diffusion dynamics to model commodity assets. However, the presence of non-
Gaussian behaviors, including spikes, jumps, and heavy tails, has led to a refinement of these
initial models. One proposal is to extend mean-reverting diffusion processes to Levy noises.
Thus, compound Poisson processes have been studied by Geman and Roncoroni [75], Cartea and
Figueroa [49], and Meyer-Brandis and Tankov [115]. A second widespread proposal is to move
to multi-factor models with Brownian [107] [17] or Levy increments [20] [32]. Finally, Benth
and Benth explore the relevance of mean-reverting diffusion processes with Normal Inverse
Gaussian (NIG) increments [26]. We compare these models and consider different estimation
and process characterization challenges for day-ahead auction market clearing prices [149] for
the French and Northern Italian electricity markets. Finally, we propose to model the daily
day-ahead log spot prices with mean-reverting processes and NIG increments.

For daily temperature models, our analysis is less extensive as the reader can refer to Alfonsi
and Vadillo [8] for a more detailed presentation of daily temperature modeling applied to
temperature derivatives pricing. We mainly suggest using a simple mean-reverting Gaussian
model as in Benth and Benth [28] to model the daily average temperature for Charles de Gaulle
and Milano Linate weather station data.
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Third, we address the challenge of the joint temperature and log spot energy price distribution
by proposing a coupled model on the dynamics. In particular, we introduce the Brownian
noise of the temperature dynamics into the energy process. This allows the integration of
weather information available at the time of price formation, as suggested by Benth and Meyer-
Brandis [23], while maintaining flexibility and tractability in both processes. We estimate
the marginals and dependence parameters of the joint model using Condition Least Square
estimation applied to the characteristic function. χ2 tests comparing the simulated and observed
joint distributions confirm the goodness of fit of the combined model for both French and
Northern Italian datasets.

Next, we introduce the pricing of quanto derivatives. Contrary to Benth and al [17], we do
not consider quanto and temperature derivatives market as arbitrage-free complete markets.
As noted above, most exchanges are OTC and CME standardized weather derivatives lack
daily trading volume [146]. Temperature and energy quantos do not exist in any open market.
Therefore, risk-neutral pricing is arguable and we stick to analyse the risk under the historical
probability. Given our combined model, we derive explicit and semi-explicit formulas for the
average payoff of futures, swaps and single sided options, here called E-options, and double-sided
options on temperature indices (HDD and CDD) and spot electricity price. These formulas are
compared with payoff distributions derived from Monte Carlo simulations. Finally, we discuss
the static hedging of E-HDD and double sided quanto options in an self-financing portfolio
framework, where the option is hedged by HDD and energy spot derivatives. We show that by
using our model we can hedge most of the risk of quanto options and reduce their variances.

Hence the contributions of this study are multiple. First, it develops a convincing joint
model for spot energy prices and daily average temperatures. Second, it proposes a method
to estimate all the parameters of the model and assess the goodness of fit. Third, it develops
pricing formulas under historical probability for futures, swaps, single and double-sided quanto
options. Finally, it shows the hedging capability of single and double-sided quanto options.

The study is organized as follows. Section 1 presents the models for the univariate and
combined dynamics of the logarithmic day-ahead spot price and the average daily temperature.
Section 2 explores different dynamics for the log day-ahead energy spot price and justifies
the modeling choice. Section 3 discusses the estimation challenges. Section 4 introduces the
combined model and confirms its goodness of fit. Section 5 addresses the risk valuation of
quantos that depend on both energy and temperature and develops a framework for static
hedging of E-HDDs and quanto options.

1 Model and data description

In this section we introduce our combined models to describe the dynamics of daily day-ahead
energy log spot price (Xt)t≥0 and the temperature (Tt)t≥0. In the following, we will also note
St = eXt , t ≥ 0, the daily day-ahead energy spot price. We will consider time-continuous
models with the time unit of one day (∆ = 1), which follows literature practices as noted
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by Deschatre [62]. Thus, Ti∆ will model the average daily temperature of the i-th day, usu-
ally defined in financial contracts as the average between the hourly minimum and maximum
temperature.

We will consider the below Model (ETM) as the combined model for daily day-ahead energy
log spot price and average daily temperature.{

d(Xt − µX(t)) = −κX(Xt − µX(t)) + λσTdW
T
t + dLX

t

d(Tt − µT (t)) = −κT (Tt − µT (t)) + σTdW
T
t

(ETM)

When λ = 0, the dynamics of X and T are independent. The elements characterizing the
dynamics of the log-price X are:

• The deterministic function µX : R+ → R represents the trend and seasonality component.
We assume that

µX(t) = βX
0 t+ αX

1 sin(ξt) + βX
1 cos(ξt) + αX,DoW

DoW (t) (1.1)

where ξ = 2π
365

and DoW (t) = ⌊ t
∆
⌋ mod p where p ∈ N∗. In practice, p = 7 and αX,DoW

DoW (·)
corresponds to the constant depending of the day in the week.

• The parameter κX > 0 corresponds to the mean-reverting (or autoregressive) behaviour.

• LX is a Normal Inverse Gaussian distribution of parameters (αX , βX , δX ,mX) which
properties are described in Appendix 6.1. We will assume that this process is centered
(E[LX

t ] = 0), which means

mX + δX
βX

γX
= 0.

Similarly, the elements characterizing the dynamics of the temperature T are:

• The function µT represents the trend and seasonality component. We assume that

µT (t) = αT
0 + βT

0 t+ αT
1 sin(ξt) + βT

1 cos(ξt), where ξ =
2π

365
.

• The parameter κT corresponds to the mean-reverting behaviour.

• W T is a Brownian motion independent of LX , and σT > 0 to the standard deviation of
the noise.

Last, the parameter λ ∈ R allows for some dependence between both processes. For the
temperature, the Ornstein-Uhlenbeck (OU) model with Brownian noise corresponds to a well
established model developed by Benth et al. [28] and largely spread on literature. We refer
to Alfonsi and Vadillo [8] for a recent discussion on temperature models. Section 2 presents
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different models for the electricity spot price and justifies the choice of dynamics of X in (ETM)
when λ = 0. Then, Section 4 explores the pertinence of Model (ETM) and shows that it
reproduces well the features of our data.

As it will be often useful in the calculations, we write here the integrated version of Model (ETM)
Xt − µX(t) = e−κX(t−s)(Xs − µX(s)) + λσT

∫ t

s

e−κX(t−u)dW T
u +

∫ t

s

e−κX(t−u)dLX
u

Tt − µT (t) = e−κT (t−s)(Ts − µT (s)) + σT

∫ t

s

e−κT (t−u)dW T
u ,

(1.2)

and introduce the notation X̃t = Xt − µX(t) and T̃t = Tt − µT (t) that will be used through the
study.

Data description

The above model is tested in real world data. In particular, we study day-ahead log spot
energy prices in France and North Italy from 5th January 2015 to 31st December 2018. This
data is extracted from the ENTSO-E Transparency Platform and Gestore Mercati Energetici
(GME) and are available hourly until 31st December 2022. We decided to average hourly data
into daily data to avoid additional intra-day noise and follow literature practices [62]. This
granularity choice will equally enable us to match the granularity of other dynamics like the
temperature data’s. Additionally, we exclude 2019 to 2022 years as energy price time series show
considerably erratic paths due two major macroeconomic shocks: the COVID-19 pandemic and
the Ukrainian war.

For temperature data, we choose to extract average daily temperature time series for Paris-
Charles de Gaulle airport and Milano-Linate airport weather stations. These weather stations
are referenced in WMO with the following identification numbers 7157 and 16080. Daily average
temperature is defined as the average between the maximum and minimum hourly tempera-
tures. Data is extracted from a private data provider platform. This latter is in charge of the
removal of outliers. The data is therefore considered as cleaned in the following of this study.

2 Overview of different energy models

The literature on energy modeling is large. We would particularly recommend the surveys of
Weron [150] and Deschatre et al.[62]. Although there can be exceptions, experts usually focus
on either day ahead daily spot or forwards prices. The granularity kept is hence the day and
is seen as the average of hourly spot prices. While forward price market modeling has been
explored successfully through HJM-modeling paradigm [21], we will focus on spot or log spot
price modeling. In the study of this section, we do not consider structural models nor neural
networks models, but we focus rather on stochastic models. Indeed, our objective is to combine
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energy dynamic modeling with temperature modeling to handle the risk of hybrid options and
have a clear understanding of the model parameters. In the following we will consider log spot
price to ensure positivity of the energy dynamics.

2.1 Mean-reverting diffusion models

The first models describing electricity dynamics are mean-reverting diffusion models. They were
first developed by Gibson and Schwartz [77], Schwartz [132] and Lucia and Schwartz [107]. They
do not focus only on electricity but apply these models to wider range of energy commodities
(crude oil, on-peak electricity spot prices). They are built around the concept of convenience
yield and model daily commodity through a Ornstein-Uhlenbeck (OU) process with Brownian
noise [143] as follows: {

Xt = µ(t) + X̃t

X̃t = −κX̃tdt+ σdWt

(2.1)

where µ(·) corresponds to a deterministic function including trend and seasonality and W to a
Brownian noise.

There is not much discussion on the form of the deterministic function µ(·). While several
papers reduce this function to a simple constant [132] [77] [60] [96], other suggest different
order Fourier expansions [26] [49] or piece-wise stepped functions [107]. These latter enable to
include annual seasonality and capture differences in winter and summer prices, a phenomenon
agreed upon literature [96] [69]. Pawlowsky and Nowak [124] justifies the presence of a trend
component on the deterministic component. We suggest to keep this constant, trend and
seasonality deterministic components and test their significance such that we define:

µ(t) = β0t+ α1 sin(ξt) + β1 cos(ξt), where ξ =
2π

365
(2.2)

This first deterministic equation is implemented and tested on our data. For this we consider
the results of the following regression function.

N−1∑
i=0

(
Xi+1 − µ(i+ 1)− e−κ(Xi − µ(i))

)2
, (2.3)

where µ(·) is defined as in Equation (2.2).
Following minimisation of Equation (2.3), we check significance of the coefficients and residual

plots. While all coefficients show 5% significance, residual plots are less satisfactory. Indeed,
as shown in Figure 2.1, residuals show important weekly dependencies. This phenomenon has
already been observed by several papers. Following this observation, some suggest to distinguish
week and week-end effects [107] [115] while others show statistical significance of daily dummy
integration [35]. We also considered alternatives such as additional weekly seasonality terms.
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Figure 2.1: Partial autocorrelation plots of residuals of the Regression (2.3) where µ(·) defined
as in Equation (2.2) (left) and as in Equation (1.1) (right). The dashed red line
corresponds to the 95% confidence interval from which we can consider the partial
autocorrelation coefficient is significantly different from 0.

The form of µ(·) minimising the AIC criteria turned to be the defined in Equation (1.1).
Now let turn to the noise W , in our case we consider the residuals of Regression (2.3) where
µ(·) as defined in (1.1) to assess the characteristics of the distribution of W . Initially, the
first models suggested Brownian dynamics for such noise following the model of Vasicek [143].
However, this proposal has been considerably challenged. Indeed, as can be seen in Figure 2.2,
the qqplot of the residuals show significant deviation from normal theoretical quantiles. The
residuals seem indeed to present heavier tails than normal residuals.

Different answers have been giving to this limitations. Some authors suggest to introduce
price spikes thanks to jump-diffusion processes [60] [49] [75] while others explore multi-factor
jump-diffusion models [115] or alternative distributions for the residuals [26]. Next sections will
concentrate on these proposals and on their estimation power.

2.2 Mean-reverting jump-diffusion models (MRJD)

Several papers have studied the possibility to consider non-Gaussian increments. A particularly
popular one is to combine Brownian motion with a compound Poisson process [60] that would
capture the price spikes usually observed in energy prices, extending (2.1) as follows

Xt = µ(t) + X̃t

X̃t = −κX̃tdt+ σdWt + dJt,

where Jt is a Poisson process of intensity λ such that Jt =
∑Nt

i=1 ξi where ξi are i.i.d. jump
magnitudes that can follow distributions such as log-Normal [49], exponential [60] or mixture of
exponential distributions [124]. One of the main drivers for distribution selection is the ability
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Figure 2.2: Quantile quantile plots for residuals of Regression (2.3) compared with a theoretical
quantiles of a normal distribution (left) and of a normal inverse gaussian distribution
(right) for French energy (first row) and North Italian Energy (second row).

to obtain explicit formulas for forward prices which mainly depends on the jump magnitude
assumptions and the time-dependence of the other parameters. Indeed more flexible models,
such us Geman and Roncoroni [75]’s, offer more flexibility on the properties of the Poisson
process but do not enable explicit formulas of the forward prices.

However, only few papers analyse the challenge of estimating the parameters of such dynam-
ics. Indeed, in order to estimate the parameters of both the continuous and the spiked noise, we
need first to be able to distinguish them. There exist different methods of jump filtering. A first
intuitive one is to settle a threshold, for example 3 standard deviations, such that data points
within this threshold are considered to belong to the continuous part while the data points
above correspond to the jumps. Cartea and Figueroa [49] and Pawlowski and Nowak [124] use
an iterative method of filtering based on such threshold. However, the choice of the threshold
seems arbitrary and integrates a standard deviation that itself combines continuous and spiked
noises. Figure 2.3 shows the residuals of Regression (2.3) filtered through the above method.
The residuals categorized as continuous suit well the normal quantiles however the jumps are
pretty sparse and, hence, difficult to fit. We explored this method but we hardly could estimate
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the jump parameters convincingly and found the filtering criteria rather arbitrary. We also con-

Figure 2.3: Jump filtering method as described by Cartea and Figueroa [49] (left). Filtered
continuous residuals qqplot against a normal distribution (center). Histogram of
jumps (right).

sidered alternative jump estimation methods. Meyer-Brandis and Tankov [115] challenge the
threshold method in their two factor model and suggest two alternative filtering algorithms.
Their implementation involves a hypothesis on the stochastic nature of the processes and the
number of spikes. Alternatively, Deng [60] suggests to implement the method of moments which
can introduce bias. Finally, Geman and Roncoroni [75] apply a maximum likelihood estimation
applied to an unknown process using a prior reference process. This method is highly dependent
on the underlying distribution and choice of priors.

2.3 Multi-factor mean-reverting models

Multi-factor models with non-Gaussian increments represent another popular alternative to
model erratic dynamics. Two factors and three factors models with Gaussian increments were
developed by Schwartz through different collaborations [132] [131] [77] [107]. The idea behind
is that the spot prices could be driven by a long-term and a short-term dynamics, so that the
spot price would integrate long-run terms and potential circumstantial tensions on the energy
market. The estimation of such models can be performed through classic Kalman filtering.
However, they do not answer the issue of bad fitting of the residuals with normal distribution
as can be observed on the right figure of Figure 2.4.

Taking inspiration of Schwartz’s models, several papers have explored the possibility to com-
bine multi-factor models with Levy processes [32] [115]. The adaptation of (2.1) to a multi-factor
model of n factors takes the following form:{

Xt = µ(t) +
∑
X̃n

t

X̃n
t = −κnX̃n

t dt+ dLn
t

where Ln
t corresponds to a Levy process.

While Björk and Landén [32] deduce analytical expression for forward contracts with compound
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Poisson processes, they do not address the estimation challenges. On their side, Meyer-Brandis
and Tankov [115] study two factor models with non-defined Levy processes and suggest a
calibration based on the autocorrelation function. Figure 2.4 shows the autocorrelation func-
tion and the exponential fitting enabling to compute the autoregressive parameters. It can be
observed that the autocorrelation function does not present a clear exponential shape. Further-
more the fitting is extremely sensitive to the time horizon considered for the autocorrelation
function.

Figure 2.4: On the left, quantile quantile plots for residuals after removal of the two autocorre-
lation dynamics compared with a theoretical quantiles of a normal distribution. On
the right, two factor model fitted through the autocorrelation function as described
in [115]. First row corresponds to French energy data while second row to North
Italy.

Finally, the inclusion of more than one autoregressive factors blocks from obtaining an in-
tegrant form of the dynamics. Given the latter and the lack of robust fitting method for
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multi-factor models with Levy processes, we prefer to focus on one factor models.

2.4 Mean-reverting diffusion models with NIG noise

As suggested by Benth and Benth [26], we explore non-Gaussian Ornstein-Uhlenbeck process.
The Normal Inverse Gaussian distribution was first introduced by Barndorff-Nielsen [12] and
presents the distribution and properties in Appendix 6.1. The first motivation to keep this
model is a rather good fitting of the residuals as can been seen in Figure 2.2. While residuals
corresponding to

∫ t

s
e−κ(t−u)dLu are not exactly distributed in NIG, the estimation of tinniness

κ suggested a very close distribution that we find convincing. The second motivation to keep
this model consisted in the relative easy estimation of the parameters. Section 3 will focus on
these challenges.
Finally, this model can be easily generalized to multivariate distributions which will enable us
to foresee combinations of energy and weather parameters dynamics in order to compute hybrid
options.
As rightly noted by Benth and Benth [26], OU-NIG dynamics correspond to a first step to-
wards stochastic volatility models that are common models for commodity derivative modelling
[60] [141] [15]. While these models are usually developed for commodity forwards under the
Heath–Jarrow–Morton (HJM) framework, the methodology can be replicated to spot price
modeling [101]. Nevertheless, stochastic volatility models imply observing daily volatility on
the modeled variable. While this is possible for energy spot prices, our objective is to combine
this dynamic with daily average temperature dynamics for which the volatility is unobserved [8].
The following section will therefore focus on a two dimensional Ornstein-Uhlenbeck dynamic
with NIG noise.

3 Separate parameter estimation of the two marginal
processes

This section focuses on the estimation challenges of our two marginals: the daily day-ahead
energy log spot price (Xt)t≥0 and the average daily temperature (Tt)t≥0. We assume that
λ = 0 in Section 3, which gives the independence of these processes and allow to estimate their
parameters separately. The joint estimation when λ ̸= 0 will be discussed in the next section.

3.1 Estimation of κX and µX(·)

Following Klimko and Nelson [95], the objective of this section is to estimate κX and µX(·)
using Conditional Least Squares Estimation (CLSE). For this, we first write the conditional
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expectation of (Xt)t≥0. From

Xt+∆ − µX(t+∆) = e−κX∆(Xt − µX(t)) +

∫ t+∆

t

e−κX(t+∆−u)dLX
u ,

we get
E[Xt+∆ − µX(t+∆)|Ft] = e−κX∆(Xt − µX(t)),

since we consider that LX is centered, that is mX + δXβX/γX = 0. We then get the following
expression for the conditional expectation:

E[Xt+∆|Ft] = µX(t+∆) + e−κX∆(Xt − µX(t)) (3.1)

where µX(t) = βX
0 t+αX

1 sin(ξt) + βX
1 cos(ξt) +αX,DoW

DoW (t) where ξ = 2π
365

and DoW (t) = ⌊ t
∆
⌋ mod

7.
We can now apply CLSE to the discrete for form of Equation (3.1) which boils down to

minimise
N−1∑
i=0

(
X(i+1)∆ − E[X(i+1)∆|Xi∆]

)2
. (3.2)

This can be solved through linear regression, and Proposition 6.1 gives:

κ̂X = − ln η̂2

β̂X
0 = η̂1

1−η̂2

α̂X
1 = η̂3(cos(ξ∆)−e−κ̂X∆)+η̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

β̂X
1 = η̂4(cos(ξ∆)−e−κ̂X∆)−η̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

α̂X,DoW
j = 1

1−e−7κ̂X∆

∑6
k=0(η̂

DoW
j+k − β̂0)e

−(6−k)κ̂X∆,

where

η̂ =

(
N−1∑
i=0

Ξi∆Ξ
⊤
i∆

)−1(N−1∑
i=0

Ξi∆X(i+1)∆

)
, (3.3)

with Ξi∆ = (i∆, Xi∆, sin(ξi∆), cos(ξi∆), (1{DoW (i∆)=j})0≤j≤6) ∈ R4 × {0, 1}7 for i ∈ N and
(η̂DoW

0 , . . . , η̂DoW
6 ) = (η̂5, . . . , η̂11) and η̂DoW

j = η̂DoW
j̃

, with j̃ ∈ {0, . . . 6} such that j = j̃ mod 7.
Figure 2.5 represents the fitted trend and seasonality component µX(·) in the original log-

arithm of spot prices. We can observe an important difference of µX(·) between week-ends
and week days. In particular, Saturdays and Sundays are particularly cheaper days. Although
energy still is traded on weekends, the volume is smaller which explains the different behaviours
also noted by Meyer-Brandis and Tankov [115]. Finally, Table 2.1 shows estimated parameters
for French and North Italian data.
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Figure 2.5: Fitted deterministic curve µX(·) for France (left) and Italy (right).

κ̂ Residuals mean Residuals SD
France 0.226 9.614× 10−16 0.171

North Italy 0.129 5.056× 10−16 0.099
Table 2.1: Fitted κ̂ and residuals of Regression (3.2) for France (left) and Italy (right)

3.2 Parameter estimation for the NIG noise

We now move to the estimation of the parameters of the NIG process. Let first recall that:

X̃t+∆ = e−κX∆X̃t +

∫ t+∆

t

e−κX(t+∆−v)dLX
v where X̃t = Xt − µX(t)

We can first observe that the residuals we study correspond to
∫ t

s
e−κX(t−v)dLX

v and not the Levy
noise per se. There is some study on the distribution of this integral particularly as Tempered
Stable Processes, see Sabino [128]. However, given the inability to compute an explicit formula,
we decided to work with approximations of this integrant. The following section will concentrate
in three estimation methodologies: CLS, maximum likelihood and EM algorithm applied to a
second order approximation of the characteristic function.

Let first study the form of the characteristic function of our process (X̃t)t≥0. We have

E(eiuX̃t+∆) = E
(
exp(iu[e−κX∆X̃t +

∫ t+∆

t

e−κX(t+∆−v)dLX
v ])

)
If we focus on the second term and use Lemma 4.1. on Benth and Benth [26]. We call φ the
characteristic function and we can write as follows:

φ(u; ∆) = E(exp(iu
∫ t+∆

t

e−κX(t+∆−v)dLX
v )) = exp

(∫ t+∆

t

ψ(iue−κX(t+∆−v))dv

)
(3.4)
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where ψ corresponds to the cumulant function of NIG distributions and is given by

ψ(x) = xmX + δX(γX −
√

(αX)2 − (βX + x)2)

Finally, we have:

φ(u; ∆) = exp

(
iumX 1− e−κX∆

κX
+ δγX∆− δX

∫ t+∆

t

√
(αX)2 − (β + iue−κX(t+∆−v))2dv

)
(3.5)

Estimation through CLS In this paragraph, we apply the CLS method developed by Klimko
and Nelson [95] to the characteristic function φ. Our objective is to minimise the below function
for u ∈ R. ∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − φ(u; ∆)

∣∣∣2 (3.6)

Now let consider a discrete time interval, the objective function in Equation (3.6) becomes:
N−1∑
t=0

∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − φ(u; ∆)
∣∣∣2

In our case, we minimise for different values of u the below objective function:∑
u

N−1∑
t=0

∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − φ(u; ∆)
∣∣∣2 (3.7)

We compute the characteristic function through numerical integration using the function quad
in Python and u is taken in {−5,−4, ..., 5}.
Remark 3.1. We contemplated to approximate the characteristic function through a Simpson’s
integration method. We tested how the choice of this approximation impacts the estimation
by comparing with with the exact numerical integration. This method lead to similar results
(see Table 2.2) and not particularly quicker (it takes 0.53s (resp. 0.63s) to minimize (3.7)
with Simpson’s on France (resp. North Italy) data) instead of 1.14s (resp. 1.25s) with exact
integration). Therefore, on the following we keep using the exact numerical integration.

The minimisation algorithm we apply is the Nelder–Mead algorithm [118]. We choose this
method because it enables to integrate boundary constraints such as αX > 0 and αX ≥ |βX |
and shows good convergence. Table 2.2 summarizes the results of the minimisation.

The reader can also note that the above methodology was validated with simulated data. We
simulated 100, 000 Normal Inverse Gaussian simulations with predefined parameters, computed
the corresponding integral and verify that the minimisation of metric (3.7) lead to the correct
parameter estimates. The sensitivity of this method was also tested with convincing results.
We leave the mathematical proof of the characteristics of these estimators as a possible further
research.
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MLE and EM-algorithm estimation through second order approximation An alternative
approach for Normal Inverse Gaussian parameter estimation is to implement the Expectation-
Maximization algorithm (EM) or maximum likelihood estimation (MLE). Unfortunately we do
not know explicitly the density of

∫ t+∆

t
e−κX(t+∆−v)dLX

v . We hence proceed to an approximation
of this density.

For this, let consider the characteristic function φ(·,∆) in Equation (3.5). We can see that:

φ(u; ∆) ≈ exp

(
∆

(
iumXe−κX∆/2 + δXγX − δX

√
(αX)2 − (βX + iue−κX∆/2)2

))

Let apply the transformation, 
m̃X = ∆mX

δ̃X = ∆δX

ũ = ue−κX∆/2

to obtain the below approximation for the characteristic function:

E(exp(iũeκX∆/2

∫ t+∆

t

e−κX(t+∆−v)dLX
v )) ≈ exp

(
iũm̃X + δ̃XγX − δ̃X

√
(αX)2 − (βX + iũ)2

)
Therefore,

(
eκX∆/2

∫ (ℓ+1)∆

ℓ∆
e−κX((ℓ+1)∆−v)dLX

v

)
ℓ≥1

behaves, at second order approximation, as a
NIG independent distribution, the EM algorithm or maximum likelihood estimation is therefore
applied to this time series. The Maximum Likelihood Estimation (MLE) is applied through
the function pre-implemented in the Python library scipy.stats while the EM-algorithm is
implemented following Karlis [93].

Method α̂X β̂X m̂X δ̂X

CLS Simp 4.222 -0.361 0.011 0.128
CLS Num 4.222 -0.361 0.011 0.128

EM 4.066 -0.340 0.011 0.131
MLE 4.013 -0.203 0.007 0.130

Method α̂X β̂X m̂X δ̂X

CLS Simp 13.736 0.319 0.004 0.152
CLS Num 13.736 0.319 0.004 0.152

EM 12.576 0.533 -0.006 0.140
MLE 12.575 0.533 -0.006 0.140

Table 2.2: Parameter estimation through the CLS, EM and maximum likelihood estimation for
French (left) and Italian (right) energy log spot price.

Table 2.2 shows the parameter estimations through the CLS method, EM algorithm and
maximum likelihood minimisation. We choose to move forward with the CLS Numerical method
as all method lead to similar results and EM and MLE method cannot be directly applied to
the combined model. From here onwards, MLE estimates are mainly used to initialize the CLS
minimisation problem (3.7).
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3.3 Estimation of κT and µT (·)
As introduced in Section 1, we consider that (Tt)t≥0 follows an Ornstein Uhlenbeck with Gaus-
sian residuals such that:

d(Tt − µT (t)) = −κT (Tt − µT (t))dt+ dW T
t

where µT (·) represents the trend and seasonality component such that µT (t) = αT
0 + βT

0 t +
αT
1 sin(ξt) + βT

1 cos(ξt), κT the autoregressive parameter of the OU and W T
t is a Brownian

motion.
First, similarly to Subsection 3.1, we implement CLS estimation to (Tt)t≥0 by minimising:

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆]

)2
. (3.8)

This can be solved through linear regression to obtain (see [8, Proposition C.1])

κ̂T = − ln ζ̂2

α̂T
0 = ζ̂0

1−ζ̂2
− ζ̂1

(1−ζ̂2)2

β̂T
0 = ζ̂1

1−ζ̂2

α̂T
1 = ζ̂3(cos(ξ∆)−e−κ̂T∆)+ζ̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂T∆)2+sin2(ξ∆)

β̂T
1 = ζ̂4(cos(ξ∆)−e−κ̂T∆)−ζ̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂T∆)2+sin2(ξ∆)
,

where

ζ̂ =

(
N−1∑
i=0

Πi∆Π
⊤
i∆

)−1(N−1∑
i=0

Πi∆T(i+1)∆

)
(3.9)

with Πi∆ = (1, i∆, Ti∆, sin(ξi∆), cos(ξi∆)) ∈ R5 for i ∈ N.
Figure 2.6 represents the daily average temperature and fitted function µT (·). Table 2.3 presents
the estimates of κT and residuals of Regression (3.8) for Paris and Milan. We can observe that
the residuals are well centered.

κ̂T Residuals mean Residuals SD
France 0.254 −1.741× 10−15 2.138

North Italy 0.250 −1.138× 10−16 1.638
Table 2.3: Fitted κ̂ and residuals of Regression (3.8) for France (left) and Italy (right).

From here onwards, we will note T̃ the deseasonalised temperature such that T̃t = Tt−µT (t).
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Figure 2.6: Fitted deterministic curve µT (·) for France (left) and Italy (right).

3.4 Parameter estimation for the temperature residuals

Our first idea was to implement a multivariate NIG for (X̃t, T̃t). We first then test if (T̃t)t≥0

can also follow a Ornstein Uhlenbeck process with NIG noise and finally show that Gaussian
noises are more stable and reliable.

To estimate NIG parameters on (T̃t)t≥0, we implement the CLS approach as in Subsection 3.2.

Method α̂T β̂T m̂T δ̂T

CLS 14.095 10−3 -0.002 98.610
Method α̂T β̂T m̂T δ̂T

CLS 38.152 10−9 10−9 111.119
Table 2.4: Parameter estimation through the CLS for French (left) and North Italian (right)

temperature.

Table 2.4 shows the parameter estimations through CLS initiated with the MLE estimates.
The results are quite unstable and particularly because β shrinks towards 0. Indeed, we are here
confronted to the special case where (T̃t)t≥0 nearly follows a Normal distribution. The analysis
of quantile quantile plots in Figure 2.7 show indeed that a Normal regression fits considerably
well to the residuals regression 3.8. This result is aligned with Larsson’s conclusions on German
mean temperatures [102].

Hence, we choose to stick to a Normal distribution for (Tt)t≥0. To estimate its parameters,
we have that W T is a Brownian noise ∼ N (mT , σ2

T ). Hence, we have
∫ t+∆

t
e−κT (t+∆−v)dW T

v ∼
N (mT

√
1−e−2κT∆

2κT
, σ2

T
1−e−2κT∆

2κT
). We can obtain the parameters of the Normal distribution by

correcting the residuals of Regression (3.8) by the factor
√

2κT

1−e−2κT∆ . Table 2.5 summarized
the results.
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Figure 2.7: Quantile quantile plots for residuals of regression 3.8 compared with a theoretical
quantiles of a normal distribution for Paris temperatures (left) and Milan temper-
atures (right).

Method m̂T σ̂2
T

MLE 10−15 2.413

Method m̂T σ̂2
T

MLE 10−16 1.846
Table 2.5: Parameter estimation through the maximum likelihood estimation for dynamic of

temperature normally distributed for Paris (left) and Milan (right) temperature.

4 Towards a combined model for (X̃t, T̃t)

In the previous section, we have considered separate models for the electricity spot price and the
temperature. This has enabled us to estimate the trend functions µX(·) and µT (·) and the speeds
of mean-reversion κX and κT . We now consider the joint model (ETM) with λ ̸= 0. First, we
show empirical results on the dependence between electricity prices and the temperature. Then,
we propose an estimation procedure of the different parameters. Since the temperature follows
an autonomous dynamics in Model (ETM), the estimation of κT , µT (·) and σT is unchanged
from the previous section. By Proposition 6.1, the least square estimation of κX and µX(·) is
also unchanged when λ ̸= 0. Therefore, this section focuses on the estimation of λ and then on
the estimation of the NIG parameters when λ ̸= 0.

4.1 Test of dependence

This section analyses the significance of the dependence structure between (X̃t)t≥0 and (T̃t)t≥0.
For this we first estimate the Pearson correlation between the residuals (X̃(i+1)∆ − e−κX∆X̃i∆)

and (T̃(i+1)∆ − e−κT∆T̃i∆). We obtain a correlation equal to −0.087 for France and −0.043 for
north Italy, which suggests a small dependence. Figure 2.8 shows standardized residuals and
ranked residuals plots for France and Italy. We cannot observe a clear dependence structure
through these plots which supports the low correlations that we have obtained.

To better analyse the dependence, Table 2.6 shows the frequencies of ranked residuals given
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a tercile classification. This time we can observe a slight anti-correlation as left top and bottom
low corners are more populated than right top and bottom left corners in both cases.

Figure 2.8: Standardized residuals (left) and ranked residuals (right) plots for France (top) and
North Italy (bottom).

In order to move forward, we perform chi-square independence tests on the ranked residuals.
For this we classify the ranked residuals based on quantiles, compute contingency tables with
frequencies per coupled quantile classification and perform a chi-square independence test on
these frequencies compared to a binomial distribution.

Figure 2.9 represents the results of the χ2 independence test performed on residuals. We
can see that the two datasets do not show same results: the French dataset clearly rejects
the independence hypotheses while the North Italian dataset only rejects the independence
hypothesis for 16 categories. This motivates us to propose a combined model for (X̃t, T̃t) that
allows dependence on the residuals.
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197 162 126
163 160 162
124 163 197

165 173 149
176 147 163
145 166 175

Table 2.6: Observed frequencies by couple tercile for French (left) and Italian (right) coupled
data.

p− value = 1.764e− 06 p− value = 6.532e− 07

p− value = 0.118 p− value = 0.008

Figure 2.9: χ2-test performed on ranked residuals for 9 (left) and 16 (right) category classifica-
tion for France (top) and Italy (bottom).

4.2 Estimation of λ and NIG parameters

Let us recall that the parameters of the Temperature diffusion κT , µT (·) and σT can be estimated
as in Section 3, as well κX and µX(·) by Proposition 6.1. We assume these parameters estimated,
and focus first on the estimation of λ.
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Estimation of λ From (1.2), we compute the covariance of the residuals:

Cov
(
Xt+∆ − µX(t+∆)− e−κX∆(Xt − µX(t)), Tt+∆ − µT (t+∆)− e−κT∆(Tt − µT (t))

)
= Cov

(
λσT

∫ t+∆

t

e−κX(t+∆−v)dW T
v +

∫ t+∆

t

e−κX(t+∆−v)dLX
v , σT

∫ t+∆

t

e−κT (t+∆−s)dW T
v

)
=

∫ t+∆

t

σ2
Tλe

−(κX+κT )(t+∆−v)dv = σ2
Tλ

1− e−(κX+κT )∆

κX + κT
.

Hence, discretizing for a time period ∆, we get the following estimator

λ̂ =
κ̂X + κ̂T

σ̂2
T (1− e−(κ̂X+κ̂T )∆)

Ĉov,

where Ĉov is the usual covariance estimator between residuals. Using values in Table 2.5, we
get the estimated value of λ in Table 2.7.

Market λ̂

France −0.007
North Italy −0.002

Table 2.7: Estimated λ of Model (ETM) for France and North Italy.

Estimation of NIG parameters We will use, as in Section 3 the CLS estimation method.
For this, we write the (conditional) characteristic function of the log-prices:

ψXt(u; ∆) := E(eiuXt+∆|Xt) = e
iu(µX(t+∆)+e−κX∆(Xt−µX(t))− 1

2
λ2σ2

T
1−e−2κX∆

2κX
u2

φ(u; ∆). (4.1)

This gives immediately the characteristic function of the residuals

E[eiu(X̃t+∆−e−κX∆X̃t)|Ft] = e
− 1

2
λ2σ2

T
1−e−2κX∆

2κX
u2

φ(u; ∆).

Then, to apply Conditional Least Square Estimation, we update the objective function in
Equation (3.7) accordingly and seek to minimise the following quantity:

∑
u

N−1∑
t=0

∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − e
− 1

2
λ2σ2

T
1−e−2κX∆

2κX
u2

φ(u; ∆)
∣∣∣2.

Table 2.8 summarizes the NIG parameter estimations through CLS. We can observe that Ta-
ble 2.8 is very close to Table 2.2 which is expected as the parameter λ is quite small.

We then turn to the goodness of fit of the estimated combined Model (ETM). Figure 2.10
and 2.11 represent χ2 test performed between the historical and simulated distributions on the
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Method α̂X β̂X m̂X δ̂X

CLS 4.189 -0.379 0.011 0.125
Method α̂X β̂X m̂X δ̂X

CLS 13.621 0.003 10−3 0.151
Table 2.8: Parameter estimation through the CLS for French (left) and Italian (right) energy

log spot price.

(2-dimensional) empirical copula between temperature and electricity spot price residuals. To
ensure reliability of the results, we perform 1, 000, 000 simulations and rescale the frequencies
to compare with observed frequencies. We can see that the test does not globally reject the
null hypotheses which means that the dependence is correctly reproduced by Model (ETM) for
both French and North Italian data.

Finally we analyse the standard deviation explained by temperature component in Model (ETM).
We use the ratio below:

|σTλ|√
σ2
Tλ

2 + δα2

γ3

we found that 9.43% and 4.34% of the standard deviation of the random term of the log
energy spot price is explained by the temperature component for French and North Italian data
correspondingly. This is small but not negligible, especially for handling the risk of derivatives
as shown in the next section.

5 Handling the risk of quanto derivatives

On the previous sections we have developed a combined model for energy spot price and tem-
perature in order to price financial derivatives combining both parameters. The objective of
this section is to apply this model for quanto valuation and hedging.

5.1 An overview on quanto design and risk valuation

Quantos are derivative contracts of which payoff depends a double trigger, meaning the claim
depends on the value at maturity of two indices. Their main interest relies on their capacity to
hedge simultaneously volumetric risk, linked to weather conditions, and price risk, represented
by the energy price. Quanto derivatives are defined, like weather and energy derivatives, over
a time period [t1, t2] such that the payoff of the contract will depend on the value of the un-
derlying during all this risk period. While there exist large studies on quanto risk valuation
involving different commodities [156], there exist little literature on the structuration and pric-
ing of quanto products mixing commodity and weather inputs [44] [22] [97].

On the one hand, there is no clear consensus on the structuring of the products. For Benth
and al. [22] and Kafakunusu [97], the payoff structure is applied to an aggregate of the two
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p− value = 0.219 p− value = 0.892

p− value = 0.616 p− value = 0.124

Figure 2.10: From top left to bottom right, χ2 test performed on the distributions of real (blue)
and simulated (green - based on 1, 000, 000 simulations) ranked residuals for 4 and
25 categories for French data.

underlyings:

Payoff := f

(
t2∑

t=t1

gS(St),

t2∑
t=t1

gT (Tt)

)
where f represents the payoff function and gS and gT represent transformations of the initial
inputs. The dates t1 < t2 indicates two days, and the summation is made on each day between
t1 and t2 (including these days). In particular, for Caporin [44], f takes the form of a product
and integrates common derivative payoff functions such that:

Payoff := fS

(
t2∑

t=t1

gS(St)

)
× fT

(
t2∑

t=t1

gT (Tt)

)
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p− value = 0.961 p− value = 0.834

p− value = 0.198 p− value = 0.7

Figure 2.11: From top left to bottom right, chi-square test performed on the distributions of real
(blue) and simulated (green - based on 1, 000, 000 simulations) ranked residuals for
4 and 25 categories for North Italian data.

Here, fS and fT can correspond to the payoff function of put and call options, capped linear
for swaps and identity for futures. Commonly fT can correspond to the formula enabling to
compute the Heating Degree Days (HDD) such that fT (·) = (T̄ −Tt)+, with T̄ = 18◦C. Finally,
some practitioners seem to favour another definition [56]. In these cases the payoff function is
directly applied to the daily values such that:

Payoff :=

t2∑
t=t1

fS(St)× fT (Tt) (5.1)

We will focus on this latter definition as it answers to practitioner’s needs. In addition, we
consider price settlement takes place at t0 and payoff payment at t2.
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We now discuss briefly the valuation of these products. Under classic risk-neutral pricing
theory for financial derivatives we would like to write the price as follows:

EQ

(
D(t0, t2)

t2∑
t=t1

fS(St)× fT (Tt)

)

where Q corresponds to the risk-neutral probability and D(t0, t2) is a discount factor between
t0 and t2.

However, temperature is not an asset traded on markets, and hence risk neutral theory
cannot be applied. A possible way to get around this is to work with payoffs written on futures
contracts, as in the works of Benth and al. [22] and Kafakunusu [97]. However, futures on
temperature are still not liquid and usual quanto payoffs are written on the temperature itself,
not on the future contracts. Here, we will rather work on the real-world probability world and
analyse the payoff distribution in this framework. We will be particularly focus on the average
payoff, which we discuss in the next subsection. In addition, we consider a unit discount rate
(i.e. D(t0, t2) = 1) as the time span t2 − t0 is rather short and there is no clear alignment on
which rate should be used, see e.g. [28] [38]. Note also that if the discount rate is deterministic
or independent of (S, T ), the formulas below are still valid up to a constant factor.

In the following section we develop explicit formulas for different payoff and compare then
with Monte Carlo simulations. We also consider the possibility to hedge statically (5.1) with
electricity and temperature derivatives, and analyse numerically the hedging error distribution.

5.2 Expected values of some standard payoffs

This section concentrates on our ability to get explicit values for the average payoff of different
financial instruments. Namely, we will consider the payoff (5.1) for different choices of functions
fS and fT . Let t0 denote the present date, we consider two dates t1 and t2 such that t0 < t1 < t2
and want to determine:

E

(
t2∑

t=t1

fS(St)× fT (Tt) | Ft0

)
.

The dates t1 and t2 indicate days, and the summation is made on all days between t1 and t2
including them. We also apply these formulas and compare the results to prices computed
through Monte Carlo simulation. The Monte Carlo discretization schemes can be found in
Appendix 6.3 and are applied to parameters in Table 2.9 and µX and µT as estimated for
France with Formulas (3.3) and (3.9).

Forwards/Futures First, let consider t0 < t1 < t2 and a future derivative between times t1
and t2. The payoff is given by (5.1) with fT (·) = fS(·) = ·. We consider the average payoff at
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κX βX
0 αX

1 βX
1 αX

DoW0 αX,DoW
1 αX,DoW

2 αX,DoW
3 αX,DoW

4 αX,DoW
5 αX,DoW

6

0.226 0.0003 -0.165 0.187 3.523 3.594 3.594 3.589 3.566 3.370 3.175
κT αT

0 βT
0 αT

1 βT
1

0.254 6.578 0.00004 -4.139 -6.959
αX βX mX δX σT λ

4.189 -0.379 0.011 0.125 2.413 -0.007
Table 2.9: Parameters used for numerical experiments. These parameters are the ones obtained

with the estimation on French electricity and temperature data.

time t0 under the historical probability:

F(t1, t2) = E
( t2∑

t=t1

St × Tt | Ft0

)
Proposition 5.1. Under Model (ETM) and for t ∈ [t1, t2], we have:

F(t1, t2) =

t2∑
t=t1

[
exp

(
µX(t) + e−κX(t−t0)(Xt0 − µX(t0))

)
φ(−i; t− t0)(

(µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))e
1
2
kX(t−t0)2λ2σ2

T

+λσ2
Tk

2
XT (t− t0)e

1
2
λ2σ2

T kX(t−t0)2

)] (5.2)

where φ is the characteristic function defined in Equation (3.5) and

kT (∆) =

√
1− e−2κT∆

2κT
, kX(∆) =

√
1− e−2κX∆

2κX
and kXT (∆) =

√
1− e−(κX+κT )∆

κX + κT
. (5.3)

This result is a direct consequence of Proposition 6.4 that calculates explicitly E(St × Tt |
Ft0). Figure 2.12 shows the price of monthly futures computed 30 days in advance for France
data. The prices have been computed with 100,000 Monte Carlo simulations and with explicit
formula in Equation (5.2). We can see that both methodologies provide same results. However,
computation with Equation (5.2) is around 650 times faster. Additionally we compute the price
with λ = 0. Although it is close to the precedent case, the price computed with λ = 0 is usually
not within the confidence intervals of the Monte Carlo simulations.

Swap Swaps are derivatives where the payoff is given by (5.1), that is, fT (·) = (T̄ − ·) and
fS(·) = (· − S̄). Here we suppose strikes S̄ and T̄ are given. For applications, and on the
following of the study T̄ = 18◦C and S̄ = 50 EUR/MWh. While taking T̄ = 18◦C is a market
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standard, taking S̄ = 50 is our choice. We decide to take a strike which is relatively into the
money and repeat the exercise for other strikes (S̄ = 40, 60), the below conclusions remain
unchanged.

We define the swap’s average payoff under historical probability S(t1, t2) as follows:

S(t1, t2) = E
( t2∑

t=t1

(St − S̄)(T̄ − Tt) | Ft0

)
Proposition 5.2. Under Model (ETM) and for t ∈ [t1, t2], we have

S(t1, t2) =
t2∑

t=t1

T̄ψXt0
(−i; t− t0)−F(t1, t2)− S̄T̄ (t2 − t1 + 1)

+ S̄

t2∑
t=t1

(µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))

(5.4)

where ψ is the characteristic function defined in Equation (4.1), F(t1, t2) as defined in Equa-
tion (5.2) and kT (·) , kX(·) and kXT (·) are defined in Equation (5.3).

This result is a direct consequence of Proposition 6.5 that calculates E((St−S̄)(T̄−Tt) | Ft0).
Figure 2.12 shows the price of monthly swaps computed 30 days in advance for France data.
The prices have been computed with 100,000 Monte Carlo simulations and with explicit formula
in Equation (5.4). As for forwards, we can see that both methods provide similar results while
using Formula (5.4) is around 300 times faster. Again, prices computed for λ = 0 are close but
out of the confidence interval of the Monte Carlo simulations.

Single sided options E-HDD and E-CDD We now focus on put and call options on tem-
perature. These are defined by the payoff (5.1) with fS(x) = x and either fT (·) := (T̄ − ·)+ for
a put option or f(·) := (· − T̄ )+ for a call option. We call these products single sided options,
since the option brings only on the temperature. We define the average payoff under historical
probability of a single sided option E−HDD(t1, t2) as follows:

E−HDD(t1, t2) = E
( t2∑

t=t1

St(T̄ − Tt)
+ | Ft0

)
=

t2∑
t=t1

E(St(T̄ − Tt)
+ | Ft0)

Let first consider each term separately. We have:

E(St(T̄ − Tt)
+ | Ft1) =

∫ T̄

T 0

E(eXt1Tt≤u | Ft1)du, (5.5)
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Figure 2.12: Forward (left) and Swap (right) prices computed with 100,000 simulation-Monte
Carlo (blue) and Equations (5.2) and (5.4) (green) methods. Each contract lasts
one month of 2018. Time t0 corresponds to 30 days ahead of the first day of the
month, t1 to the first day of the month and t2 to the last day of the month.

where T 0 = −∞. Note that the Gaussian model for the temperature allows in principle any
real temperature. In practice, with the estimated parameters, the probability of having extreme
temperatures is very infinitesimal. We can thus use (5.5) with T 0 = −273.15 (the absolute zero
temperature) or T 0 = −100 with a negligible error.

Proposition 5.3. Under Model (ETM) and for t ∈ [t1, t2], we have

E−HDD(t1, t2) =

t2∑
t=t1

[
ψXt0

(−i; t− t0)×

∫ T̄

T 0

Φ
(u− (µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))

σTk(t− t0)
− λσT

k2XT (t− t0)

kT (t− t0)

)
du

] (5.6)

where ψ is the characteristic function defined in Equation (4.1), Φ is the cumulative function
of the standard Gaussian distribution and kT (·) , kX(·) and kXT (·) are as in Equation (5.3).

Proof. For t ∈ [t1, t2], we use (5.5) and apply then Proposition 6.9.

Similarly, we can calculate explicitly the average payoff of a E-CDD defined as:

E−CDD(t1, t2) = E
( t2∑

t=t1

St(Tt − T̄ )+ | Ft0

)
.
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Proposition 5.4. Under Model (ETM) and for t ∈ [t1, t2], we have:

E−CDD(t1, t2) =

t2∑
t=t1

[
ψXt0

(−i; t− t0)×

∫ Tm

T̄

Φ
(
λσT

k2XT (t− t0)

kT (t− t0)
− u− (µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))

σTkT (t− t0)

)
du

] (5.7)

where Tm = +∞, ψ is the characteristic function defined in Equation (4.1), Φ is the cumulative
function of the standard Gaussian distribution, kT (·), kX(·) and kXT (·) are as in Equation (5.3).

In practice, (5.7) can be used with Tm = 100 with a negligible error, the probability of having
temperature above 100°C being infinitesimal.

Figures in 2.13 show the price of monthly E-HDD and E-CDD computed 30 days in advance
for French data. The prices have been computed with 100,000 Monte Carlo simulations and
with explicit formula in Equations (5.6) and (5.7). We can see that both methodologies provide
same results. However, computation with formulas is, again, around 40 times faster for E-HDD
and 3 times faster for E-CDD. In addition, we compute the price with λ = 0, the impact on
prices is visual for E-CDD as the prices are out of the confidence interval of the Monte Carlo
simulations. This shows the significance of λ on the valuation of derivatives.

Figure 2.13: E-HDD (left) and E-CDD (right) prices computed with 100,000 simulation-Monte
Carlo (blue) and Equations (5.6) and (5.7) (green) methods. Each contract lasts a
month of 2018. t0 corresponds to 30 days ahead of the first day of the month, t1 to
the first day of the month and t2 to the last day of the month. The computation
of the derivatives through the formulas around 40 times faster for E-HDD and 3
times faster for E-CDD.
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Quanto options Let now consider double sided options given by Equation (5.1) with the
following payoff function specifications fS(·) = (·− S̄)+ and fT (·) = (T̄ −·)+. We consider then
the average payoff function:

Q(t1, t2) = E
( t2∑

t=t1

(St − S̄)+(T̄ − Tt)
+ | Ft0

)
Given our Model (ETM), there is no explicit formula for Q up to our knowledge. However,
we suggest to perform a Taylor’s series expansion to the first order on λ given that λ is quite
small. The next proposition gives semi-explicit formulas for this expansion.

Proposition 5.5. Under Model (ETM) and for t ∈ [t1, t2], we have the following Taylor’s
series expansion:

Q(t1, t2) =

t2∑
t=t1

(
Eλ=0((St − S̄)+ | Ft0)×

((
T̄ − µT (t)− e−κT (t−t0)(Tt0 − µT (t0))

)
×

Φ
( T̄ − µT (t)− e−κT (t−t0)(Tt0 − µT (t0))

σTkT (t− t0)

)
+
σTkT (t− t0)√

2π
exp

(
− 1

2

( T̄ − µT (t)− e−κT (t−t0)(Tt0 − µT (t0))

σTkT (t− t0)

)2))
−
(
Eλ=0((St − S̄)+ | Ft0) + S̄Pλ=0

(
St ≥ S̄ | Ft0

) )
×

σ2
TkXT (t− t0)

2Φ
( T̄ − µT (t)− e−κT (t−t0)(Tt0 − µT (t0))

−σTkT (t− t0)

))
λ

)
+ o(λ)

(5.8)

where Φ is the cumulative distribution function of the standard Gaussian distribution, kT (·) ,
kX(·) and kXT (·) are as in Equation (5.3).

This result is a direct application of Proposition 6.7. Note that Eλ=0((St − S̄)+ | Ft0) (resp.
Pλ=0

(
St ≥ S̄ | Ft0

)
) can be computed efficiently as in Equation (6.3) (resp. Equation (6.4)).

Figure 2.14 shows quanto prices computed with Equation (5.8) and 100,000 simulation-Monte
Carlo simulations. We can see that the first order Taylor development is sufficient as prices are
always within Monte Carlo confidence intervals. We compare this with a quanto approached
keeping only the first term of Taylor development which is equivalent to λ = 0. This time,
average payoff values are close but out of the Monte Carlo confidence intervals. Explicit formula
computation remains faster than Monte Carlo simulations however it gets less attractive than
for previous derivatives as it includes several numerical integrations.

To sum up, we have developed in this subsection explicit or semi-explicit formulas for futures,
swaps, single-sided and double sided options given Model (ETM). These formulas are verified
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Figure 2.14: Quanto prices computed with 100,000 simulation-Monte Carlo (blue) and Equa-
tion (5.8) (green) methods. On the left the price corresponds to Formula (5.8).
On the right only the first term of the Taylor development in Equation (5.8) is
considered. This is equivalent to consider λ = 0. Each contract lasts a month of
2018. Time t0 corresponds to 30 days ahead of the first day of the month, t1 to
the first day of the month and t2 to the last day of the month. The computation
of the derivatives through the formulas is around 6 times faster than using Monte
Carlo simulations.

through Monte Carlo simulations and remain faster to use than Monte Carlo techniques. Fi-
nally, approaching the formulas with λ = 0 provides results close to the simulated ones but out
of their confidence intervals showing the significance of the dependence between electricity and
temperature on the risk associated to these derivatives.

5.3 Static hedging of hybrid derivatives

In the following section, we leverage explicit formulas developed in the above subsection and
discuss potential statistic hedging strategies for E-HDD and double-sided quantos.

We remind that hedging challenges are key for portfolio and risk managers to handle risk
aggregation questions and meet solvency constraints. The aim of this subsection is to show
that while quantos are somehow exotic derivatives, they can be hedged through more common
derivatives increasing their attractiveness and risk understanding.

5.3.1 Risk decomposition of E-HDD

Let first focus on E-HDD and take a self-financing portfolio approach. We suppose that we
are at time t and that we want to find the static portfolio made with single HDD, future on
electricity and cash that minimizes the square hedging error at t+∆ where ∆ > 0:

E[(St+∆(T̄ − Tt+∆)
+ − c0t,t+∆ − c1t,t+∆(T̄ − Tt+∆)

+ − c2t,t+∆St+∆)
2|Ft]. (5.9)
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Remark 5.1. The risk related to the future on the electricity spot can in principle be hedged
dynamically on the electricity market. Instead, the risk related to the elementary HDD (T̄−Tt)+
cannot be hedged.

This is a quadratic function with respect to (c0t,t+∆, c
1
t,t+∆, c

2
t,t+∆) and the first order condition

leads to: 1 E[(T̄ − Tt+∆)
+|Ft] E[St+∆|Ft]

E[(T̄ − Tt+∆)
+|Ft] E[((T̄ − Tt+∆)

+)2|Ft] E[St+∆(T̄ − Tt+∆)
+|Ft]

E[St+∆|Ft] E[St+∆(T̄ − Tt+∆)
+|Ft] E[S2

t+∆|Ft]

c0t,t+∆

c1t,t+∆

c2t,t+∆



=

 E[St+∆(T̄ − Tt+∆)
+|Ft]

E[St+∆((T̄ − Tt+∆)
+)2|Ft]

E[S2
t+∆(T̄ − Tt+∆)

+|Ft]


(5.10)

Proposition 5.6. Under Model (ETM) and for ∆ > 0, the vector (c0t,t+∆, c
1
t,t+∆, c

2
t,t+∆) min-

imising the function (5.9) is the unique solution of the linear equation (5.10), whose components
can be explicitly or semi-explicitly calculated.

Proof. The fact that the linear quadratic problem (5.9) boils down to (5.10) is standard,
one only has to check that the matrix on the left-hand side is invertible so that there is a
unique solution. This matrix is a (conditional) covariance matrix: it is invertible, otherwise we
could find Ft-measurable coefficients (c0t,t+∆, c

1
t,t+∆, c

2
t,t+∆) such that c0t,t+∆+c1t,t+∆(T̄ −Tt+∆)

++
c2t,t+∆St+∆ = 0, which is clearly impossible from (1.2).

We now recall how to calculate explicitly or semi-explicitly: E[(T̄ − Tt+∆)
+|Ft] is given by

Proposition 6.6, E[((T̄ − Tt+∆)
+)2|Ft] by Proposition 6.8, E[St+∆|Ft] and E[S2

t+∆|Ft] can be
calculated with the characteristic function in Equation (3.5), E[St+∆(T̄ −Tt+∆)

+|Ft] by Propo-
sition 6.9 and E[S2

t+∆(T̄ − Tt+∆)
+|Ft] by Proposition 6.10. Finally we compute E[St+∆((T̄ −

Tt+∆)
+)2|Ft] by using Proposition 6.11.

Figures 2.15 show the results of the daily portfolio optimisation during 31 days starting the
1st January 2018. First, we can observe that c0 and c1 present a seasonality. This is explained
by the integration of weekend days where there is small energy trade while the constant c0 and
c1 are related to non-seasonal tools. This seasonality is not present in c2 as the instrument
hedged by the c2 has the same seasonality as the output. Second, we can also comment on the
signs of c1 and c2 which are both positive. This shows that both instruments are used to hedge
the output St+∆(T̄ − Tt+∆)

+ − c0t,t+∆ − c1t,t+∆(T̄ − Tt+∆)
+ − c2t,t+∆St+∆. The cash quantity c0

accommodates to respond to the minimisation. Third, we can observe that for λ non-zero a
small share of c0 is reported to c2 as we are leveraging the dependence structure between the
energy and the temperature.

Figure 2.16 shows the empirical density of the portfolio only composed by St+∆(T̄ − Tt+∆)
+

and including hedging for the month of January and May 2018. We compare the 100, 000 Monte
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Figure 2.15: From top left to bottom right, c0t0,t1+i∆, c1t0,t1+i∆ and c2t0,t1+i∆ starting from 1st
January 2018 (t1) and with t0 = t1 − 30, ∆ = 1 and i = 0, . . . , 30.

Carlo simulations of the portfolio with and without hedging. We can see that the hedging is
efficient as the average of the hedge portfolio is 0 while the average of the portfolio without
hedging is negative. In addition, the hedging strategy also decreases the variances of a port-
folio payoff as the portfolio without hedging is clearly more spread than the one hedged. In
the example of January (resp. May), the average payoff of the E-HDD is 22, 055 (resp. 3, 014)
and its standard deviation is 4, 127 (resp. 1, 487). In contrast, the average PnL of the static
hedging portfolio is −0.754 (resp. −0.389 in May) and its standard deviation is 534 (resp. 276).

Furthermore, we analyse the impact of λ < 0 supposing a portfolio hedged by using the
model with λ = 0. While the hedging of the portfolio still is effective the average PnL of the
portfolio in January (resp. May) is −137.638 (resp. −67.734) with λ = 0 instead of −0.754
(resp. −0.389) with the correct value of λ, and the corresponding standard deviation is 597
(resp. 282) with λ = 0 instead of 534 (resp. 276) with the correct value of λ. This shows that
λ has some influence on the quality of the hedge, and the portfolio hedging effectiveness when
using options on temperature and energy as hedging instruments.

5.3.2 Risk decomposition of quantos

We replicate the above exercise for portfolios including quantos. We suppose that we are at
time t and that we want to find the static portfolio made with single HDD, puts on electricity
and cash that minimizes the square hedging error:

E[((St+∆ − S̄)+(T̄ − Tt+∆)
+ − d0t,t+∆ − d1t,t+∆(T̄ − Tt+∆)

+ − d2t,t+∆(St+∆ − S̄)+)2|Ft]. (5.11)

This is again a quadratic function with respect to (d0t,t+∆, d
1
t,t+∆, d

2
t,t+∆) and the first order
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Figure 2.16: Empirical density of
∑31

i=1 −St+i∆(T̄ − Tt1+i∆)
+ (blue) and

∑31
i=1 c

0
t0,t1+(i−1)∆ +

c1t0,t1+(i−1)∆(T̄ −Tt1+i∆)
++c2t0,t1+(i−1)∆St−St1+i∆(T̄ −Tt1+i∆)

+ (green) for portfolio
optimisation starting on 1st January 2018 (for t1 on the left) and 1st May 2018
(for t1 on the right), with t0 = t1 − 30 and lasting the whole month.

condition leads to: 1 E[(T̄ − Tt+∆)
+|Ft] E[(St+∆ − S̄)+|Ft]

E[(T̄ − Tt+∆)
+|Ft] E[((T̄ − Tt+∆)

+)2|Ft] E[(St+∆ − S̄)+(T̄ − Tt+∆)
+|Ft]

E[(St+∆ − S̄)+|Ft] E[(St+∆ − S̄)+(T̄ − Tt+∆)
+|Ft] E[((St+∆ − S̄)+)2|Ft]

d0t,t+∆

d1t,t+∆

d2t,t+∆


=

 E[(St+∆ − S̄)+(T̄ − Tt+∆)
+|Ft]

E[(St+∆ − S̄)+((T̄ − Tt+∆)
+)2|Ft]

E[((St+∆ − S̄)+)2(T̄ − Tt+∆)
+|Ft]


(5.12)

Proposition 5.7. Under Model (ETM) and for ∆ > 0, the vector (d0t,t+∆, d
1
t,t+∆, d

2
t,t+∆) min-

imising the quadratic criterion (5.11) is the unique solution of the linear system (5.12). The first
order Taylor development when λ→ 0 of all components of this linear system can be explicitly
or semi-explicitly calculated.

Proof. The arguments assuring the existence of a unique minimizer are the same as in Propo-
sition 5.6. All the terms above have already been implemented in the Subsection 5.2 except for
E[((St+∆ − S̄)+)2|Ft], E[(St+∆ − S̄)+((T̄ − Tt+∆)

+)2|Ft] and E[((St+∆ − S̄)+)2(T̄ − Tt+∆)
+|Ft].

The calculation of the first one can be made by using the Carr-Madan approach as presented
in Proposition 6.3, while the Taylor developments of the two other terms are given respectively
by Proposition 6.12 and Proposition 6.13.

Figure 2.17 shows the coefficients d0t,t+∆, d1t,t+∆ and d2t,t+∆ evolution on the month of January
2018. We can observe that d0t,t+∆ and d1t,t+∆ are, as before, weekly seasonal. In addition, in this
case d0t,t+∆ and d1t,t+∆ are very close for both λ nill and negative. For d2t,t+∆, we only get the
weekly phenomenon when λ is negative.
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Figure 2.18 shows the empirical density of the PnL of the portfolio for January and May 2018.
In both cases we observe a significant hedging effect. The hedging effect is more important in
January as the double condition on the options are hit more frequently. In May, the quanto
does not claim so often and the PnL Monte Carlo simulations are closer to 0. In both cases,
the PnL of the portfolio is reduced on average from −3, 358 to 0.208 in January (from −89.174
to −0.113 in May) and on standard deviation from 2, 197 to 391 in January (from 177 to 98 in
May).

We again compare the hedging obtained with the exact value of λ < 0 (coupled model) and
the one obtained with λ = 0 (independent dynamics). In January (resp. May), the average
PnL of the portfolio with λ is 0.208 (resp. −0.113) instead of −93.072 (resp. −12.283) for
λ = 0 for January. The standard deviation with λ is 391 (resp. 99) instead of 394 (resp. 100)
for λ = 0 respectively. This again shows that the parameter λ has some notable influence on
the portfolio hedging: while λ is small, the hedging constructed with this value performs better
than the one using λ = 0.

Figure 2.17: From top left to bottom right, d0t0,t1+i∆, d1t0,t1+i∆and d2t0,t1+i∆ starting from 1st
January 2018 (t1), with t0 = t1−30 and with t0 = t1−30, ∆ = 1 and i = 0, . . . , 30.

To sum up, the portfolio study above shows that one can effectively hedge E-HDD and
double-sided option quantos through single index-based derivatives. This single-index-based
derivatives are traded in open market which ease accessibility and decrease operational costs.
For energy derivatives, we can even consider these markets as liquid and suppose a perfect
hedging of this risk component. Understanding this risk decomposition is key for risk managers
and risk transfer businesses as it enables to gain comfort on the product and ensure meeting
their own solvency constraints. Given this is a highly regulated economic sector, regulators are
also concerned about this hedging capacity.

Finally, in this section we address the pricing of quanto derivatives on temperature and
electricity. We explore different payoff functions and develop explicit pricing formulas for swaps,
futures, single sided quanto options and double sided quanto options. These formulas are
verified through Monte Carlo simulations. Finally we explore the possibility to statistically
hedge single and double sided quanto options. We obtain an efficient daily risk decomposition
of these derivatives leading to a averaged-simulated complete hedging of these derivatives. This

115



Risk valuation of quanto derivatives for temperature and electricity

Figure 2.18: Empirical density of
∑31

i=1−(St1+i∆ − S̄)+(T̄ − Tt1+i∆)
+ (blue) and∑31

i=1 d
0
t0,t1+(i−1)∆ + d1t0,t1+(i−1)∆(T̄ − Tt1+i∆)

+ + d2t0,t1+(i−1)∆(St1+i∆ − S̄)+ −
(St1+i∆ − S̄)+(T̄ − Tt1+i∆)

+ (green) for portfolio optimisation starting on 1st
January 2018 (for t1 on the left) and 1st May 2018 (for t1 on the right), with
t0 = t1 − 30 and lasting the whole month.

capacity to hedge these derivatives is key to confirm the efficiency and market viability of these
products.
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6 Appendices

6.1 The Normal Inverse Gaussian (NIG) distribution

This paragraph recalls the parametrization of NIG distributions and some elementary proper-
ties. The NIG distribution is a generalised hyperbolic distribution introduced by Barndorff-
Nielsen [12]. Its density function is defined as follow:

f(x;α, β, δ,m) =
αδK1

(
α
√
δ2 + (x−m)2

)
π
√
δ2 + (x−m)2

eδγ+β(x−m), x ∈ R

where m ∈ R is the location of the density, β ∈ R, α > |β|, and δ ∈ R the scale and K1 denotes
a modified Bessel function of the second kind. We denote by NIG(α, β, δ,m) this law and set
γ =

√
α2 − β2 > 0. The moments and the characteristic function are known explicitly: for

X ∼ NIG(α, β, δ,m), we have

E(X) = m+
δβ

γ
, V ar(X) =

δα2

γ3

Skewness(X) =
3β

α
√
γδ
, Ex.Kurtosis(X) = 3

1 + 4β2/α2

δγ
.

The characteristic function is given by

E[eiuX ] = e
ium+δ

(
γ−
√

α2−(β+iu)2
)
, u ∈ R.

6.2 CLS estimator of the drift parameters of the log spot price process

We consider Model (ETM), and we want to estimate the mean-reversion parameter κX as well
as the parameters defining the function µX(·) given by (1.1).

The goal of this appendix is to compute the conditional least squares estimator of
(κX , β

X
0 , α

X
1 , β

X
1 , α

X,DoW
0 , . . . , αX,DoW

6 ) and to prove the next proposition. We note αX,DoW =
(αX,DoW

0 , . . . , αX,DoW
6 ) and define, for j ∈ N, αX,DoW

j = αX,DoW

j̃
, with j̃ ∈ {0, . . . 6} such that

j = j̃ mod 7.

Proposition 6.1. Let Ξi∆ = (i∆, Xi∆, sin(ξi∆), cos(ξi∆),
(
1{DoW (i∆)=j}

)
j=0,...,6

) ∈ R4×{0, 1}7

for i ∈ N with (Xt)t≥0 following the dynamics of (ETM) and ∆ > 0. We assume that∑N−1
i=0 Ξi∆Ξ

⊤
i∆ is invertible and define

η̂ = (η̂1, . . . η̂11)
⊤ =

(
N−1∑
i=0

Ξi∆Ξ
⊤
i∆

)−1(N−1∑
i=0

Ξi∆X(i+1)∆

)
. (6.1)
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If η̂2 ∈ (0, 1) ∪ (1,+∞), the solution of the minimisation problem

min
κX , β

X
0 , α

X
1 , β

X
1 , α

X,DoW

N−1∑
i=0

(
X(i+1)∆ − E[X(i+1)∆|Xi∆]

)2 (6.2)

is given by 

κ̂X = − ln η̂2

β̂X
0 = η̂1

1−η̂2

α̂X
1 = η̂3(cos(ξ)−e−κ̂X∆)+η̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

β̂X
1 = η̂4(cos(ξ)−e−κ̂∆)−η̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂∆)2+sin2(ξ∆)

α̂X,DoW
j = 1

1−e−7κ̂X∆

∑6
k=0(η̂

DoW
j+k − β̂0)e

−(6−k)κ̂X∆,

with (η̂DoW
0 , . . . , η̂DoW

6 ) = (η̂5, . . . , η̂11) and η̂DoW
j = η̂DoW

j̃
, with j̃ ∈ {0, . . . 6} such that j = j̃

mod 7.

Proof. From (1.2), we get

E[Xt+∆|Ft] = Xte
−κX∆ + µX(t+∆)− µX(t)e

−κX∆

by using the martingale property of the stochastic integral and the fact that LX is centered.
We now use trigonometric identities to get

µX(t+∆)− e−κX∆µX(t) =β0(t+∆)− β0e
−κX∆t+ α1 sin(ξ(t+∆))− α1e

−κX∆ sin(ξt)

+ β1 cos(ξ(t+∆))− β1e
−κX∆ cos(ξt) +

6∑
j=0

αDoW
j 1{DoW (t+∆)=j}

− αDoW
j e−κX∆

1{⌊DoW (t)=j}

= η1t+ η3 sin(ξt) + η4 cos(ξt) +
6∑

j=0

ηDoW
j 1{⌊DoW (t)=j},

with 

η1 = β0(1− e−κX∆)

η2 = e−κX∆

η3 = α1(cos(ξ∆)− e−κX∆)− β1 sin(ξ∆)

η4 = α1 sin(ξ∆) + β1(cos(ξ∆)− e−κX∆)

ηDoW
j = αDoW

j+1 − αDoW
j e−κX∆ + β0∆ with convention αDoW

7 = αDoW
0 ,
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where η2 is set to have E[X(i+1)∆|Fi∆] = η⊤Ξi∆, i.e. is the regression coefficient with respect
to Xi∆. The minimization problem (6.2) is then equivalent to

min
η ∈ R11

N−1∑
i=0

(
X(i+1)∆ − η⊤Ξi∆

)2
.

This corresponds to a linear regression, whose solution is given by (6.1). When η2 ∈ (0, 1), the
system can be inverted, and the claim follows easily.

Let us note here that η̂⊤Ξi∆ can then be seen as the estimation of E[X(i+1)∆|Xi∆].

6.3 Simulation of Model (ETM) and associated characteristic
function

Let recall (1.2):
Xt+∆ − µX(t+∆) = e−κX∆(Xt − µX(t)) + λσT

∫ t+∆

t

e−κX(t+∆−v)dW T
v +

∫ t+∆

t

e−κX(t+∆−v)dLX
v

Tt+∆ − µT (t+∆) = e−κT∆(Tt − µT (t)) + σT

∫ t+∆

t

e−κT (t+∆−v)dW T
v .

The simulation algorithm is the following:

1. Simulate N1 ∼ N (0, 1) and N2 ∼ N (0, 1).

2. Simulate ZX ∼ NIG(αX , βX , δX ,− δXβX

γX ) (we work with centered NIG distributions).

3. Simulate (X̃t+∆, T̃t+∆) given (X̃t, T̃t) using the below scheme
Xt+∆ = µX(t+∆) + e−κX∆(Xt − µX(t)) + λσT

√
1− e−2κX∆

2κX
N1 + e−κX∆/2ZX

Tt+∆ = µT (t+∆) + e−κT∆(Tt − µT (t)) + σT

√
1− e−2κT∆

2κT
(ρN1 +

√
1− ρ2N2),

with ρ defined as in Proposition 6.2.

Note that this is the exact scheme for T , and the only discretization error on X comes from the
approximation of

∫ t+∆

t
e−κX(t+∆−v)dLX

v . When comparing the pricing by Monte-Carlo with the
formulas using the Fourier transform as in Section 5, it is then worth to use the characteristic
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function associated to this discretization scheme. This avoids to have a bias between both
methods. Namely, we use for t0 < t such that t− t0 is a multiple of the discretization step ∆

ψ̂Xt(u; t0 − t) =e
iu(µX(t)+e−κX (t−t0)(Xt−µX(t))− 1

2
λ2σ2

T
1−e−2κX (t−t0)

2κX
u2

×

exp

(
∆

t−t0
∆

−1∑
ℓ=0

(
iumXe−κX(ℓ+1/2)∆ + δXγX − δX

√
(αX)2 − (βX + iue−κX(ℓ+1/2)∆)2

))
.

instead of (4.1).

6.4 Proofs of the results of Section 5

6.4.1 Results on the dependence between X and T

From (1.2), we are interested in the law of (
∫ t+∆

t
e−κX(t+∆−v)dW T

v ,
∫ t+∆

t
e−κT (t+∆−v)dW T

v ) that
captures the dependence between Xt+∆ and Tt+∆ given Xt and Tt.

Proposition 6.2. The random vector

(∫ t+∆

t
e−κX(t+∆−v)dW T

v∫ t+∆

t
e−κT (t+∆−v)dW T

v

)
is a centered Gaussian vector

with covariance matrix

(∆) :=

[
k2X(∆) k2XT (∆)
k2XT (∆) k2T (∆)

]
=

[
1−e−2κX∆

2κX

1−e−(κX+κT )∆

κX+κT
1−e−(κX+κT )∆

κX+κT

1−e−2κT∆

2κT

]
.

It has the same law as (
kX(∆)ϱ
kT (∆)

)
G+

(
kX(∆)

√
1− ϱ2

0

)
G⊥

where G and G⊥ ∼ N (0, 1) are independent and ϱ = k2XT (∆)

kX(∆)kT (∆)
∈ [0, 1].

Proof. The Brownian motion is a Gaussian process, which gives the Gaussian property. We
use then the Itô isometry to get the covariance matrix.

From Proposition 6.2, we can quickly get the following corollary.

Corollary 6.1. Conditionally on (
∫ t+∆

t
e−κT (t+∆−v)dW T

v ), (
∫ t+∆

t
e−κX(t+∆−v)dW T

v ) follows a
Gaussian distribution with mean

E
(∫ t+∆

t

e−κX(t+∆−v)dW T
v

∣∣∣ ∫ t+∆

t

e−κT (t+∆−v)dW T
v

)
=

2κT
1− e−2κT∆

1− e−(κX+κT )∆

κX + κT

∫ t+∆

t

e−κT (t+∆−v)dW T
v
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and variance
1− e−2κX∆

2κX
−
(1− e−(κX+κT )∆

κX + κT

)2 2κT
(1− e−2κT∆)

.

6.4.2 Identities on the normal distribution

We note Φ the cumulative distribution function of the normal distribution N (0, 1).

Lemma 6.1. Let G ∼ N (0, 1), a ∈ R, b > 0. We have

E[(a+ bG)+] = aΦ(a/b) +
b√
2π
e−a2/(2b2).

Proof. We have E[(a+ bG)+] =
∫∞
−a/b

(a+ bx) e
−x2/2
√
2π

dx = aΦ(a/b) + b√
2π
e−a2/(2b2).

Lemma 6.2. Let a ∈ R, b ∈ R and G ∼ N (0, 1). We have

E[bG(a+ bG)+] = b2Φ(a/|b|)

Proof. It is sufficient to prove the result for b > 0 since bG law
= |b|G. Let d = a/b. We have

E[bG(a+ bG)+] = b2E[G(d+G)+] and

E[G(d+G)+] =

∫ ∞

−d

x(d+ x)
e−

x2

2

√
2π
dx = Φ(d).

Lemma 6.3. Let a ∈ R, b > 0 and G ∼ N (0, 1). We have

E[((a+ bG)+)2] = (a2 + b2)Φ(a/b) +
ab√
2π
e−

a2

2b2 .

Proof. Let d = a/b. We have E[((a+ bG)+)2] = b2E[((d+G)+)2] and

E[((d+G)+)2] =

∫ ∞

−d

(d2 + 2dx+ x2)
e−

x2

2

√
2π
dx = d2Φ(d) +

2d√
2π
e−

d2

2 − d√
2π
e−

d2

2 + Φ(d).

Lemma 6.4. Let a ∈ R, b ∈ R and G ∼ N (0, 1). We have

E[bG((a+ bG)+)2] = |b|3
(√ 2

π
e−

1
2
( a
|b| )

2

+ 2
a

|b|
Φ(

a

|b|
)
)

Proof. Since bG has the same law as |b|G, it is sufficient to consider the case b > 0. We have
E[bG((a + bG)+)2] = b3E[G((d + G)+)2] with d = a

b
. We then get by integration by parts and

then Lemma 6.1

E[G((d+G)+)2] =

∫ ∞

−d

(d+ x)2x
e−

x2

2

√
2π
dx = 2

∫ ∞

−d

(d+ x)
e−

x2

2

√
2π
dx

= 2E[(d+G)+] =

√
2

π
e−

d2

2 + 2dΦ(d).
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6.4.3 Computations with Fourier transform

In the following section, we will develop some conditional expectations for different derivatives.
However, some derivatives do not admit explicit formulas and were computed through inverse
Fourier methods.

We first use Carr Madan formula [48, Equations (5) and (6)] to compute E((St+∆− S̄)+ | Ft)
for t ≥ 0,∆ > 0:

E((St+∆ − S̄)+ | Ft) =
exp(−αX̄)

π

∫ ∞

0

e−iX̄v ψXt(v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v
dv, (6.3)

where ψ corresponds to the characteristic function as in Equation (4.1), α > 0 and X̄ := ln(S̄).
Note that from (4.1), we have E[S1+α

t+∆|Ft] < ∞ a.s. and is equal to ψXt(−(α + 1)i; ∆). In
practice, we take α = 0.5 for (6.3) as well as for Proposition 6.3 below.

Second, we apply Gil-Pelaez [78] inversion formula to compute P
(
St+∆ ≥ S̄ | Ft

)
.

Pλ=0

(
St+∆ ≥ S̄ | Ft

)
=

1

2
+

1

π

∫ ∞

0

R
(e−ivX̄ψXt(v)

iv

)
dv (6.4)

where R denotes the real part, ψ the characteristic function as in Equation (4.1) and X̄ := ln(S̄).

Third, we leverage again Carr Madan [48] approach to compute E(((St+∆ − S̄)+)2 | Ft).

Proposition 6.3. Under Model (ETM), we have

E(((St+∆ − S̄)+)2 | Ft)

=
exp(−αX̄)

π

∫ ∞

0

e−iX̄vψ(v − (α + 2)i; ∆)
( 1

α + iv
− 2

1

α + 1 + iv
+

1

α + 2 + iv

)
dv

(6.5)

where ψ corresponds is the characteristic function as in Equation (4.1), α > 0 and X̄ := ln(S̄).

Proof. We prove the result for a random variable Y with distribution µ on R such that
E[e(2+α)Y ] <∞. We define

C(k) = E
[(

(eY − ek)+
)2]

=

∫ ∞

k

(ey − ek)2µ(dy)

and c(k) = eαkC(k). The function c is nonnegative and integrable on R since∫
R
c(k)dk ≤

∫
R
eαkE[e2Y 1Y >k]dk =

E[e(2+α)Y ]

α
<∞,
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by Fubini’s theorem. Following Carr Madan [48], as c is integrable, we can define its inverse
Fourier transform ψ̃ : C −→ C such that:

ψ̃(v) =

∫ ∞

−∞
eivkc(k)dk

=

∫ ∞

−∞
eivk

∫ ∞

k

e−αk(ek − ey)2µ(dy)dk

=

∫ ∞

−∞

( 1

α + iv
− 2

1

α + 1 + iv
+

1

α + 2 + iv

)
e(α+2+iv)yµ(dy)

= ψ(v − (α + 2)i)
( 1

α + iv
− 2

1

α + 1 + iv
+

1

α + 2 + iv

)
,

by using Fubini’s theorem. We have |ψ̃(v)| ≤ E[e(2+α)Y ] 2
|α+iv||α+1+iv||α+2+iv| , and thus ˜ψ(v) is

integrable on R and bounded. We get then the claim by Fourier inversion and using that
E[S2+α

t+∆|Ft] = ψXt(−(α + 2)i) <∞ a.s.

6.4.4 Results to calculate the average payoffs of derivatives

Futures

Proposition 6.4. Under Model (ETM), we have

E(St+∆Tt+∆ | Ft) = exp

(
µX(t+∆) + e−κX∆(Xt − µX(t))

)
φ(−i; ∆)×(

(µT (t+∆) + e−κT∆(Tt − µT (t)))e
1
2
kX(∆)2λ2σ2

T + λσ2
Tk

2
XT (∆)e

1
2
λ2σ2

T kX(∆)2

)
where φ is the characteristic function defined in Equation (3.5) and kT (·) , kX(·) and kXT (·)
are as in Equation (5.3).

Proof. From (1.2), we get

E(eXt+∆Tt+∆ | Ft) = E

(
exp

(
µX(t+∆) + e−κX∆(Xt+∆ − µX(t+∆)) + λσT

∫ t+∆

t

e−κX(t+∆−u)dW T
u

+

∫ t+∆

t

e−κX(t+∆−u)dLX
u

)
Tt+∆

∣∣∣∣∣Ft

)

= exp

(
µX(t+∆) + e−κX∆(Xt − µX(t))

)
E(e

∫ t+∆
t e−κX (t+∆−u)dLX

u )×

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u Tt+∆

∣∣∣∣∣Tt
)
,
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since
∫ t+∆

t
e−κX(t+∆−u)dLX

u is independent of Ft and Tt. The first term is deterministic, the
second term is equal to φ(−i; ∆) by (3.4). We use (1.2) to write as follows the third term:

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u Tt+∆

∣∣∣∣∣Tt
)

= (µT (t+∆) + e−κT∆(Tt − µT (t)))E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

)

+ σTE

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

∫ t+∆

t

e−κT (t+∆−u)dW T
u

)
.

From Proposition 6.2, we get E
(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

)
= e

1
2
kX(∆)2λ2σ2

T and

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

∫ t+∆

t

e−κT (t+∆−u)dW T
u

)

= E

(
e
λσT (

k2XT (∆)

kT (∆)
G+

√
kX (∆)2kT (∆)2−k4

XT
(∆)

kT (∆)
G⊥)

kT (∆)G

)

= E

(
e
λσT

√
kX (∆)2kT (∆)2−k4

XT
(∆)

kT (∆)
G⊥

)
kT (∆)E

(
Ge

λσT
k2XT (∆)

kT (∆)
G

)
.

Since E[exG] = ex
2/2 and E[GexG] = xex

2/2, we get the claim.

Swaps

Proposition 6.5. Under Model (ETM) and for ∆ > 0 , we have

E((St+∆ − S̄)(T̄ − Tt+∆) | Ft) = T̄ψXt(−i; ∆)−F(t, t+∆)− S̄T̄ + S̄(µT (t) + e−κT∆(Tt − µT (t)))

where ψ is the characteristic function defined in Equation (4.1), F(t, t+∆) as in Equation (5.2)
and kX(·) is as in Equation (5.3).

Proof. Let first develop the formula:

E((St+∆ − S̄)(T̄ − Tt+∆) | Ft) = T̄E(St+∆ | Ft)− E(St+∆Tt+∆ | Ft)− S̄T̄ + S̄E(Tt+∆ | Ft)

We have E(St+∆Tt+∆ | Ft) from Equation (5.2) and Proposition 6.4. The first term is equal to:

T̄E(St+∆ | Ft) = T̄ψXt(−i; ∆)

and, by using the independence between LX and W T , we get the forth term:

S̄E(Tt+∆ | Ft) = S̄(µT (t+∆) + e−κT∆(Tt − µT (t))).
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Quantos

Proposition 6.6. Under Model (ETM) and for ∆ > 0 , we have

E[(T̄ − Tt+∆)
+ | Ft] =

(
T̄ − µT (t+∆)− e−κT∆(Tt − µT (t)

)
×

Φ

(
T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

)
+
σTkT (∆)√

2π
exp

(
− 1

2

( T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

)2)
Proof. Under Model (ETM), the distribution of T̄ − Tt+∆ given Ft is N (T̄ − µT (t + ∆) −
e−κT∆(Tt − µT (t)), σ

2
TkT (∆)2). We then apply Lemma 6.1 to obtain the result.

Proposition 6.7. Under Model (ETM) and for ∆ > 0, we can write the following Taylor
expansion on λ:

E((St+∆ − S̄)+(T̄ − Tt+∆)
+ | Ft) = Eλ=0((St+∆ − S̄)+ | Ft)×((

T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))
)
×

Φ
( T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

)
+
σTkT (∆)√

2π
exp

(
− 1

2

( T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

)2))
−
(
Eλ=0((St+∆ − S̄)+ | Ft) + S̄Pλ=0

(
St+∆ ≥ S̄ | Ft

) )
×

σ2
TkXT (∆)2Φ

( T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

))
λ+ o(λ)

where kT (·) , kX(·) and kXT (·) are as in Equation (5.3).

Proof. Under Model (ETM) and for ∆ > 0 , we want to compute the first order Taylor expansion
of E((St+∆ − S̄)+(T̄ − Tt+∆)

+ | Ft). For λ = 0,

E((St+∆ − S̄)+(T̄ − Tt+∆)
+ | Ft) = E((St+∆ − S̄)+ | Ft)E((T̄ − Tt+∆)

+ | Ft)

We have E((T̄−Tt+∆)
+ | Ft) from Proposition 6.6 and E((St+∆−S̄)+ | Ft) from Equation (6.3).

Let now consider the derivative of E((St+∆ − S̄)+(T̄ − Tt+∆)
+ | Ft) in λ = 0:

d

dλ

∣∣∣∣
λ=0

E((St+∆ − S̄)+(T̄ − Tt+∆)
+ | Ft)

= Eλ=0

(
1St+∆≥S̄σT

∫ t+∆

t

e−κX(t+∆−s)dWse
Xt+∆(T̄ − Tt+∆)

+ | Ft

)
= Eλ=0

(
1St+∆≥S̄e

Xt+∆ | Ft

)
Eλ=0

(
σT

∫ t+∆

t

e−κX(t+∆−s)dWs(T̄ − Tt+∆)
+ | Ft

)
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Let consider the first term,

Eλ=0

(
1St+∆≥S̄St+∆ | Ft

)
= Eλ=0((St+∆ − S̄)+ | Ft) + S̄Pλ=0

(
St+∆ ≥ S̄ | Ft

)
The first element is computed with Equation (6.3) and the second with Equation (6.4).

We can now develop the second term by using Proposition 6.2 and (1.2):

E
(
σT

∫ t+∆

t

e−κX(t+∆−s)dW T
s (T̄ − Tt+∆)

+ | Ft

)
=
kXT (∆)2

kT (∆)2
E
(
σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s (T̄ − Tt+∆)

+ | Ft

)
=
kXT (∆)2

kT (∆)2
E

(
σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s

×
(
T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))− σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s

)+
∣∣∣∣∣Ft

)
.

(6.6)
Now we apply Lemma 6.2 with a = T̄ − µT (t+∆)− e−κT∆(Tt − µT (t)) and b = −σTkT (∆) to
get

E
(
σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s (T̄ − Tt+∆)

+

∣∣∣∣Ft

)
= −σ2

TkT (∆)2Φ

(
T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

) (6.7)

6.4.5 Results for static hedging portfolios

Results for E-HDD

Proposition 6.8. Under Model (ETM), we have

E[((T̄ − Tt+∆)
+)2 | Ft] =

(
(T̄ − µT (t+∆)− e−κT∆(Tt − µT (t)))

2 + σ2
TkT (∆)2

)
×

Φ
( T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

)
+

(T̄ − µT (t+∆)− e−κT∆(Tt − µT (t)))σTkT (∆)√
2π

×

exp
(
− 1

2

( T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

)2)
.

Proof. Since T̄ −Tt+∆ follows a Gaussian distribution given Ft, we have an explicit formula by
using Lemma 6.3.
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Proposition 6.9. Under Model (ETM), we have

E(eXt+∆1Tt+∆≤u | Ft) = ψXt(−i; ∆)Φ
( ũ(Tt)
kT (∆)

− λσT
k2XT (∆)

kT (∆)

)
.

E(eXt+∆1u≤Tt+∆
| Ft) = ψXt(−i; ∆)Φ

(
λσT

k2XT (∆)

kT (∆)
− ũ(Tt)

kT (∆)

)
.

where ψ is the characteristic function defined in Equation (4.1), kT (·) , kX(·) and kXT (·) are
as in Equation (5.3) and ũ(Tt) = u−(µT (t+∆)+e−κT∆(Tt−µT (t)))

σT
.

Proof. From (1.2), we can write

E(eXt+∆1Tt+∆≤u | Ft) = exp

(
µX(t) + e−κX∆(Xt − µX(t))

)
E(e

∫ t+∆
t e−κX (t+∆−u)dLX

u )×

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u 1Tt+∆≤u

∣∣∣∣∣Ft

)
The second term is φ(−i; ∆), see (3.4). We now consider the last term:

E

(
eλσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1Tt+∆≤u

∣∣∣∣∣Ft

)
= E

(
eλσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1∫ t+∆
t e−κX (t+∆−s)dWT

s ≤ũ(Tt)

∣∣∣∣∣Ft

)
where ũ(Tt) = u−(µT (t+∆)+e−κT∆(Tt−µT (t)))

σT
. For ũ ∈ R and G,G⊥ ∼ N (0, 1) independent, we

have:

E

(
e
λσT (

k2XT (∆)

kT (∆)
G+

√
kX (∆)2kT (∆)2−k2

XT
(∆)

kT (∆)
G⊥)

1kT (∆)G≤ũ

)
= e

λ2σ2
T

2

kX (∆)2kT (∆)2−k4XT (∆)

k2
T
(∆) ×

e
(λσT )2

2
(
k2XT (∆)

kT (∆)
)2
Φ
( ũ

kT (∆)
− λσT

k2XT (∆)

kT (∆)

)
,

because E[exG1G≤a] = e
x2

2 Φ(a−x) for x, a ∈ R. Since ũ(Tt) is Ft-measurable and the variables∫ t+∆

t
e−κX(t+∆−u)dW T

u and
∫ t+∆

t
e−κT (t+∆−u)dW T

u are independent of Ft, we get the claim by
applying Proposition 6.2.
Proposition 6.10. Under Model (ETM), we have

E(e2Xt+∆1Tt+∆≤u | Ft) = exp

(
2µX(t+∆) + 2e−κX∆(Xt − µX(t))

)
×

exp

(
2mX 1− e−κX∆

κX
+ δXγX∆− δX

∫ ∆

0

√
(αX)2 − (βX + 2e−κX(∆−v))2dv

)
×

e4
λ2σ2

T
2

kX(∆)2Φ
( ũ(Tt)
kT (∆)

− 2λσT
k2XT (∆)

kT (∆)

)
.
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where kT (·) , kX(·) and kXT (·) are as in Equation (5.3) and ũ(Tt) = u−(µT (t+∆)+e−κT∆(Tt−µT (t)))
σT

.

Proof. From (1.2), we can write

E(e2Xt+∆1Tt+∆≤u | Ft) = exp

(
2µX(t+∆) + 2e−κX∆(Xt − µX(t))

)
E(e2

∫ t+∆
t e−κX (t+∆−u)dLX

u )×

E

(
e2λσT

∫ t+∆
t e−κX (t+∆−u)dWT

u 1Tt+∆≤u

∣∣∣∣∣Ft

)
The second term is φ(−i; ∆) by (3.4), and the last one is

E

(
e2λσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1Tt+∆≤u

∣∣∣∣∣Ft

)
= E

(
e2λσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1∫ t+∆
t e−κX (t+∆−s)dWT

s ≤ũ(Tt)

∣∣∣∣∣Ft

)

where ũ(Tt) = u−(µT (t+∆)+e−2κT∆(Tt−µT (t)))
σT

. We now calculate for ũ ∈ R, and G,G⊥ ∼ N (0, 1)
independent:

E

(
e
2λσT (

k2XT (∆)

kT (∆)
G+

√
kX (∆)2kT (∆)2−k2

XT
(∆)

kT (∆)
G⊥)

1kT (∆)G≤ũ

)
= e

4λ2σ2
T

2

kX (∆)2kT (∆)2−k4XT (∆)

k2
T
(∆) ×

e
(2λσT )2

2
(
k2XT (∆)

kT (∆)
)2
Φ

(
ũ

kT (∆)
− 2λσT

k2XT (∆)

kT (∆)

)
.

Since ũ(Tt) is Ft-measurable and the variables
∫ t+∆

t
e−κX(t+∆−u)dW T

u and
∫ t+∆

t
e−κT (t+∆−u)dW T

u

are independent of Ft, we get the claim by applying Proposition 6.2.

Proposition 6.11. Under Model (ETM), we have

E[St+∆((T̄ − Tt+∆)
+)2|Ft] = 2

∫ T̄

T 0

(T̄ − u)E[St+∆1u≤Tt+∆
|Ft]du,

with T0 = −∞.

We write this result with T 0, because for numerical purposes we use T 0 = −273.15 or T 0 =
−100. Note that E[St+∆1u≤Tt+∆

|Ft] can be calculated by using Proposition 6.9.

Proof. We have

((T̄ − Tt+∆)
+)2 =

∫ T̄

T 0

∫ T̄

T 0

1Tt+∆≤u1Tt+∆≤vdudv

= 2

∫ T̄

T 0

∫ T̄

T 0

1Tt+∆≤u1Tt+∆≤v1u≤vdudv = 2

∫ T̄

T 0

(T̄ − u)1Tt+∆≤udu,

and therefore

E[St+∆((T̄ − Tt+∆)
+)2|Ft] = 2

∫ T̄

T 0

(T̄ − u)E[St+∆1Tt+∆≤u|Ft]du.
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Results for two-sided quantos

Proposition 6.12. Under Model (ETM), we have the following Taylor decomposition:

E[(St+∆ − S̄)+((T̄ − Tt+∆)
+)2|Ft] = Eλ=0[(St+∆ − S̄)+|Ft]E[((T̄ − Tt+∆)

+)2|Ft]

− λ
(
Eλ=0[(St+∆ − S̄)+|Ft] + S̄Pλ=0[(St+∆ − S̄)+|Ft]

)
×

σ3
TkT (∆)k2XT (∆)

(√ 2

π
e
− 1

2
(
T̄−µ(t+∆)−e−κT ∆(Tt−µ(t))

σT kT (∆)
)2

+ 2
T̄ − µ(t+∆)− e−κT∆(Tt − µ(t))

σTkT (∆)
×

Φ
( T̄ − µ(t+∆)− e−κT∆(Tt − µ(t))

σTkT (∆)

))
+ o(λ)

where kT (·), kXT (·) are as in Equation (5.3).

Note that Eλ=0[(St+∆−S̄)+|Ft] and Pλ=0

(
St+∆ ≥ S̄ | Ft

)
are computed through Equation (6.3)

and (6.4) respectively, and that Eλ=0[((T̄ − Tt+∆)
+)2|Ft] can be calculated by using Proposi-

tion 6.8.

Proof. As for E[(St+∆ − S̄)+] we will perform a Taylor decomposition of E[(St+∆ − S̄)+((T̄ −
Tt+∆)

+)2|Ft]. Let consider the 0 order term,

Eλ=0[(St+∆ − S̄)+((T̄ − Tt+∆)
+)2|Ft] = Eλ=0[(St+∆ − S̄)+|Ft]E[((T̄ − Tt+∆)

+)2|Ft].

Now, let us compute the derivative at λ = 0:

d

dλ

∣∣∣∣
λ=0

E
[
(St+∆ − S̄)+((T̄ − Tt+∆)

+)2
∣∣∣∣Ft

]
= E

[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v St+∆1St+∆≥S̄((T̄ − Tt+∆)

+)2
∣∣∣∣Ft

]
= Eλ=0

(
St+∆1St+∆≥S̄ | Ft

)
E
[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v ((T̄ − Tt+∆)

+)2
∣∣∣∣Ft

]
,

and Eλ=0[St+∆1St+∆≥S̄|Ft] = Eλ=0[(St+∆ − S̄)+|Ft] + S̄Pλ=0[(St+∆ − S̄)+|Ft].
By Proposition 6.2, we have

E[σT
∫ t+∆

t

e−κX(t+∆−v)dW T
v ((T̄ − Tt+∆)

+)2|Ft]

=
k2XT (∆)

k2T (∆)
E
[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v ((T̄ − Tt+∆)

+)2
∣∣Ft

]
.
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We can now use Lemma 6.4 with a = T̄ − µ(t +∆)− e−κT∆(Tt − µ(t)) and b = −σTkT (∆) to
get

E
[
σT

∫ t+∆

t

e−κT (t+∆−v)dW T
v ((T̄ − Tt+∆)

+)2
∣∣∣∣Ft

]
= −σ3

TkT (∆)3
(√ 2

π
e
− 1

2
(
T̄−µ(t+∆)−e−κT∆(Tt−µ(t))

σT kT (∆)
)2

+ 2
T̄ − µ(t+∆)− e−κT∆(Tt − µ(t))

σTkT (∆)
×

Φ
( T̄ − µ(t+∆)− e−κT∆(Tt − µ(t))

σTkT (∆)

))
Proposition 6.13. Under Model (ETM), we have the following Taylor expansion:

E[((St+∆ − S̄)+)2(T̄ − Tt+∆)
+|Ft] = Eλ=0[((St+∆ − S̄)+)2|Ft]E[(T̄ − Tt+∆)

+|Ft]

− 2
(
Eλ=0[((St+∆ − S̄)+)2|Ft] + S̄Eλ=0[(St+∆ − S̄)+|Ft]

)
×

σ2
TkXT (∆)2Φ

( T̄ − µT (t+∆)− e−κT∆(Tt − µT (t))

σTkT (∆)

)
λ+ o(λ)

where kT (·) and kXT (·) are as in Equation (5.3).

Note that Eλ=0[(St+∆ − S̄)+|Ft] and Eλ=0[((St+∆ − S̄)+)2|Ft] can be computed through Equa-
tion (6.3) and (6.5) respectively, Eλ=0[(T̄−Tt+∆)

+|Ft] is given by Proposition 6.6 and Eλ=0[((T̄−
Tt+∆)

+)2|Ft] can be calculated by using Proposition 6.8.

Proof. For λ = 0, we have

Eλ=0[((St+∆ − S̄)+)2(T̄ − Tt+∆)
+|Ft] = Eλ=0[((St+∆ − S̄)+)2|Ft]Eλ=0[(T̄ − Tt+∆)

+|Ft].

Now, let us compute the derivative in λ = 0:

d

dλ

∣∣∣∣
λ=0

E[((St+∆ − S̄)+)2(T̄ − Tt+∆)
+|Ft] = Eλ=0

[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v ×

2St+∆(St+∆ − S̄)+(T̄ − Tt+∆)
+

∣∣∣∣Ft

]
= 2Eλ=0[St+∆(St+∆ − S̄)+|Ft]×

E
[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v (T̄ − Tt+∆)

+
∣∣Ft

]
.

The calculation of E[σT
∫ t+∆

t
e−κX(t+∆−v)dW T

v (T̄−Tt+∆)
+|Ft] has already been done in Equa-

tions (6.6) and (6.7).
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